902 research outputs found
One-Parameter Homothetic Motion in the Hyperbolic Plane and Euler-Savary Formula
In \cite{Mul} one-parameter planar motion was first introduced and the
relations between absolute, relative, sliding velocities (and accelerations) in
the Euclidean plane were obtained. Moreover, the relations
between the Complex velocities one-parameter motion in the Complex plane were
provided by \cite{Mul}. One-parameter planar homothetic motion was defined in
the Complex plane, \cite{Kur}. In this paper, analogous to homothetic motion in
the Complex plane given by \cite{Kur}, one-parameter planar homothetic motion
is defined in the Hyperbolic plane. Some characteristic properties about the
velocity vectors, the acceleration vectors and the pole curves are given.
Moreover, in the case of homothetic scale identically equal to 1, the
results given in \cite{Yuc} are obtained as a special case. In addition, three
hyperbolic planes, of which two are moving and the other one is fixed, are
taken into consideration and a canonical relative system for one-parameter
planar hyperbolic homothetic motion is defined. Euler-Savary formula, which
gives the relationship between the curvatures of trajectory curves, is obtained
with the help of this relative system
An outflow in the Seyfert ESO 362-G18 revealed by Gemini-GMOS/IFU observations
Indexación: Scopus.We present two-dimensional stellar and gaseous kinematics of the inner 0.7 × 1.2 kpc2 of the Seyfert 1.5 galaxy ESO 362-G18, derived from optical (4092-7338 Å) spectra obtained with the GMOS integral field spectrograph on the Gemini South telescope at a spatial resolution of ≈ 170 pc and spectral resolution of 36 km s-1. ESO 362-G18 is a strongly perturbed galaxy of morphological type Sa or S0/a, with a minor merger approaching along the NE direction. Previous studies have shown that the [O III] emission shows a fan-shaped extension of ≈ 10′′ to the SE. We detect the [O III] doublet, [N II] and Hα emission lines throughout our field of view. The stellar kinematics is dominated by circular motions in the galaxy plane, with a kinematic position angle of ≈ 137° and is centred approximately on the continuum peak. The gas kinematics is also dominated by rotation, with kinematic position angles ranging from 122° to 139°, projected velocity amplitudes of the order of 100 km s-1, and a mean velocity dispersion of 100 km s-1. A double-Gaussian fit to the [O III]λ5007 and Hα lines, which have the highest signal to noise ratios of the emission lines, reveal two kinematic components: (1) a component at lower radial velocities which we interpret as gas rotating in the galactic disk; and (2) a component with line of sight velocities 100-250 km s-1 higher than the systemic velocity, interpreted as originating in the outflowing gas within the AGN ionization cone. We estimate a mass outflow rate of 7.4 × 10-2 M⊙ yr-1 in the SE ionization cone (this rate doubles if we assume a biconical configuration), and a mass accretion rate on the supermassive black hole (SMBH) of 2.2 × 10-2 M⊙ yr-1. The total ionized gas mass within ∼84 pc of the nucleus is 3.3 × 105 M⊙; infall velocities of ∼34 km s-1 in this gas would be required to feed both the outflow and SMBH accretion. © ESO 2018.https://www.aanda.org/articles/aa/abs/2018/06/aa31671-17/aa31671-17.htm
The Hubbard Model at Infinite Dimensions: Thermodynamic and Transport Properties
We present results on thermodynamic quantities, resistivity and optical
conductivity for the Hubbard model on a simple hypercubic lattice in infinite
dimensions. Our results for the paramagnetic phase display the features
expected from an intuitive analysis of the one-particle spectra and
substantiate the similarity of the physics of the Hubbard model to those of
heavy fermion systems. The calculations were performed using an approximate
solution to the single-impurity Anderson model, which is the key quantity
entering the solution of the Hubbard model in this limit. To establish the
quality of this approximation we compare its results, together with those
obtained from two other widely used methods, to essentially exact quantum Monte
Carlo results.Comment: 29 pages, 16 figure
Magnetic and Dynamic Properties of the Hubbard Model in Infinite Dimensions
An essentially exact solution of the infinite dimensional Hubbard model is
made possible by using a self-consistent mapping of the Hubbard model in this
limit to an effective single impurity Anderson model. Solving the latter with
quantum Monte Carlo procedures enables us to obtain exact results for the one
and two-particle properties of the infinite dimensional Hubbard model. In
particular we find antiferromagnetism and a pseudogap in the single-particle
density of states for sufficiently large values of the intrasite Coulomb
interaction at half filling. Both the antiferromagnetic phase and the
insulating phase above the N\'eel temperature are found to be quickly
suppressed on doping. The latter is replaced by a heavy electron metal with a
quasiparticle mass strongly dependent on doping as soon as . At half
filling the antiferromagnetic phase boundary agrees surprisingly well in shape
and order of magnitude with results for the three dimensional Hubbard model.Comment: 32 page
The Liquid-Gas Phase Transitions in a Multicomponent Nuclear System with Coulomb and Surface Effects
The liquid-gas phase transition is studied in a multi-component nuclear
system using a local Skyrme interaction with Coulomb and surface effects. Some
features are qualitatively the same as the results of Muller and Serot which
uses relativistic mean field without Coulomb and surface effects. Surface
tension brings the coexistance binodal surface to lower pressure. The Coulomb
interaction makes the binodal surface smaller and cause another pair of binodal
points at low pressure and large proton fraction with less protons in liquid
phase and more protons in gas phase.Comment: 20 pages including 7 postscript figure
Sum rules and dualities for generalized parton distributions: is there a holographic principle?
To leading order approximation, the physical content of generalized parton
distributions (GPDs) that is accessible in deep virtual electroproduction of
photons or mesons is contained in their value on the cross-over trajectory.
This trajectory separates the t-channel and s-channel dominated GPD regions.
The underlying Lorentz covariance implies correspondence between these two
regions through their relation to GPDs on the cross-over trajectory. This point
of view leads to a family of GPD sum rules which are a quark analogue of finite
energy sum rules and it guides us to a new phenomenological GPD concept. As an
example, we discuss the constraints from the JLab/Hall A data on the dominant
u-quark GPD H. The question arises whether GPDs are governed by some kind of
holographic principle.Comment: 45 pages, 4 figures, Sect. 2 reorganized for clarity. Typos in Eq.
(20) corrected. 4 new refs. Matches published versio
Neutral H density at the termination shock: a consolidation of recent results
We discuss a consolidation of determinations of the density of neutral
interstellar H at the nose of the termination shock carried out with the use of
various data sets, techniques, and modeling approaches. In particular, we focus
on the determination of this density based on observations of H pickup ions on
Ulysses during its aphelion passage through the ecliptic plane. We discuss in
greater detail a novel method of determination of the density from these
measurements and review the results from its application to actual data. The H
density at TS derived from this analysis is equal to 0.087 \pm 0.022 cm-3, and
when all relevant determinations are taken into account, the consolidated
density is obtained at 0.09 \pm 0.022 cm-3. The density of H in CHISM based on
literature values of filtration factor is then calculated at 0.16 \pm 0.04
cm-3.Comment: Submitted to Space Science Review
Identification of a novel coronavirus in patients with severe acute respiratory syndrome
BACKGROUND: The severe acute respiratory syndrome (SARS) has recently been identified as a new clinical entity. SARS is thought to be caused by an unknown infectious agent. METHODS: Clinical specimens from patients with SARS were searched for unknown viruses with the use of cell cultures and molecular techniques. RESULTS: A novel coronavirus was identified in patients with SARS. The virus was isolated in cell culture, and a sequence 300 nucleotides in length was obtained by a polymerase-chain-reaction (PCR)-based random-amplification procedure. Genetic characterization indicated that the virus is only distantly related to known coronaviruses (identical in 50 to 60 percent of the nucleotide sequence). On the basis of the obtained sequence, conventional and real-time PCR assays for specific and sensitive detection of the novel virus were established. Virus was detected in a variety of clinical specimens from patients with SARS but not in controls. High concentrations of viral RNA of up to 100 million molecules per milliliter were found in sputum. Viral RNA was also detected at extremely low concentrations in plasma during the acute phase and in feces during the late convalescent phase. Infected patients showed seroconversion on the Vero cells in which the virus was isolated. CONCLUSIONS: The novel coronavirus might have a role
Physics of Solar Prominences: II - Magnetic Structure and Dynamics
Observations and models of solar prominences are reviewed. We focus on
non-eruptive prominences, and describe recent progress in four areas of
prominence research: (1) magnetic structure deduced from observations and
models, (2) the dynamics of prominence plasmas (formation and flows), (3)
Magneto-hydrodynamic (MHD) waves in prominences and (4) the formation and
large-scale patterns of the filament channels in which prominences are located.
Finally, several outstanding issues in prominence research are discussed, along
with observations and models required to resolve them.Comment: 75 pages, 31 pictures, review pape
On the influence of a network on optically isotropic fluid phases with tetrahedral/octupolar order
- …
