163 research outputs found
A Statistical Study on Photospheric Magnetic Nonpotentiality of Active Regions and Its Relationship with Flares during Solar Cycles 22-23
A statistical study is carried out on the photospheric magnetic
nonpotentiality in solar active regions and its relationship with associated
flares. We select 2173 photospheric vector magnetograms from 1106 active
regions observed by the Solar Magnetic Field Telescope at Huairou Solar
Observing Station, National Astronomical Observatories of China, in the period
of 1988-2008, which covers most of the 22nd and 23rd solar cycles. We have
computed the mean planar magnetic shear angle (\bar{\Delta\phi}), mean shear
angle of the vector magnetic field (\bar{\Delta\psi}), mean absolute vertical
current density (\bar{|J_{z}|}), mean absolute current helicity density
(\bar{|h_{c}|}), absolute twist parameter (|\alpha_{av}|), mean free magnetic
energy density (\bar{\rho_{free}}), effective distance of the longitudinal
magnetic field (d_{E}), and modified effective distance (d_{Em}) of each
photospheric vector magnetogram. Parameters \bar{|h_{c}|}, \bar{\rho_{free}},
and d_{Em} show higher correlation with the evolution of the solar cycle. The
Pearson linear correlation coefficients between these three parameters and the
yearly mean sunspot number are all larger than 0.59. Parameters
\bar{\Delta\phi}, \bar{\Delta\psi}, \bar{|J_{z}|}, |\alpha_{av}|, and d_{E}
show only weak correlations with the solar cycle, though the nonpotentiality
and the complexity of active regions are greater in the activity maximum
periods than in the minimum periods. All of the eight parameters show positive
correlations with the flare productivity of active regions, and the combination
of different nonpotentiality parameters may be effective in predicting the
flaring probability of active regions.Comment: 20 pages, 5 figures, 4 tables, accepted for publication in Solar
Physic
Treatment of backscattering in a gas of interacting fermions confined to a one-dimensional harmonic atom trap
An asymptotically exact many body theory for spin polarized interacting
fermions in a one-dimensional harmonic atom trap is developed using the
bosonization method and including backward scattering. In contrast to the
Luttinger model, backscattering in the trap generates one-particle potentials
which must be diagonalized simultaneously with the two-body interactions.
Inclusion of backscattering becomes necessary because backscattering is the
dominant interaction process between confined identical one-dimensional
fermions. The bosonization method is applied to the calculation of one-particle
matrix elements at zero temperature. A detailed discussion of the validity of
the results from bosonization is given, including a comparison with direct
numerical diagonalization in fermionic Hilbert space. A model for the
interaction coefficients is developed along the lines of the Luttinger model
with only one coupling constant . With these results, particle densities,
the Wigner function, and the central pair correlation function are calculated
and displayed for large fermion numbers. It is shown how interactions modify
these quantities. The anomalous dimension of the pair correlation function in
the center of the trap is also discussed and found to be in accord with the
Luttinger model.Comment: 19 pages, 5 figures, journal-ref adde
The Periodic Instability of Diameter of ZnO Nanowires via a Self-oscillatory Mechanism
ZnO nanowires with a periodic instability of diameter were successfully prepared by a thermal physical vapor deposition method. The morphology of ZnO nanowires was investigated by SEM. SEM shows ZnO possess periodic bead-like structure. The instability only appears when the diameter of ZnO nanowires is small. The kinetics and mechanism of Instability was discussed at length. The appearance of the instability is due to negative feed-back mechanism under certain experimental conditions (crystallization temperature, vapor supersaturation, etc)
Measurements of the observed cross sections for exclusive light hadrons containing at , 3.650 and 3.6648 GeV
By analyzing the data sets of 17.3, 6.5 and 1.0 pb taken,
respectively, at , 3.650 and 3.6648 GeV with the BES-II
detector at the BEPC collider, we measure the observed cross sections for
, , ,
and at the three energy
points. Based on these cross sections we set the upper limits on the observed
cross sections and the branching fractions for decay into these
final states at 90% C.L..Comment: 7 pages, 2 figure
Partial wave analysis of J/\psi \to \gamma \phi \phi
Using events collected in the BESII detector, the
radiative decay is
studied. The invariant mass distribution exhibits a near-threshold
enhancement that peaks around 2.24 GeV/.
A partial wave analysis shows that the structure is dominated by a
state () with a mass of
GeV/ and a width of GeV/. The
product branching fraction is: .Comment: 11 pages, 4 figures. corrected proof for journa
Direct Measurements of Absolute Branching Fractions for D0 and D+ Inclusive Semimuonic Decays
By analyzing about 33 data sample collected at and around 3.773
GeV with the BES-II detector at the BEPC collider, we directly measure the
branching fractions for the neutral and charged inclusive semimuonic decays
to be and , and determine the ratio of the two branching
fractions to be
Measurements of the observed cross sections for exclusive light hadron production in e^+e^- annihilation at \sqrt{s}= 3.773 and 3.650 GeV
By analyzing the data sets of 17.3 pb taken at GeV
and 6.5 pb taken at GeV with the BESII detector at the
BEPC collider, we have measured the observed cross sections for 12 exclusive
light hadron final states produced in annihilation at the two energy
points. We have also set the upper limits on the observed cross sections and
the branching fractions for decay to these final states at 90%
C.L.Comment: 8 pages, 5 figur
Search for the Rare Decays J/Psi --> Ds- e+ nu_e, J/Psi --> D- e+ nu_e, and J/Psi --> D0bar e+ e-
We report on a search for the decays J/Psi --> Ds- e+ nu_e + c.c., J/Psi -->
D- e+ nu_e + c.c., and J/Psi --> D0bar e+ e- + c.c. in a sample of 5.8 * 10^7
J/Psi events collected with the BESII detector at the BEPC. No excess of signal
above background is observed, and 90% confidence level upper limits on the
branching fractions are set: B(J/Psi --> Ds- e+ nu_e + c.c.)<4.8*10^-5, B(J/Psi
--> D- e+ nu_e + c.c.) D0bar e+ e- + c.c.)<1.1*10^-5Comment: 10 pages, 4 figure
- …