73 research outputs found

    Intramyocardial implantation of differentiated rat bone marrow mesenchymal stem cells enhanced by TGF-β1 improves cardiac function in heart failure rats

    No full text
    The present study tested the hypotheses that i) transforming growth factor beta 1 (TGF-β1) enhances differentiation of rat bone marrow mesenchymal stem cells (MSCs) towards the cardiomyogenic phenotype and ii) intramyocardial implantation of the TGF-β1-treated MSCs improves cardiac function in heart failure rats. MSCs were treated with different concentrations of TGF-β1 for 72 h, and then morphological characteristics, surface antigens and mRNA expression of several transcription factors were assessed. Intramyocardial implantation of these TGF-β1-treated MSCs to infarcted heart was also investigated. MSCs were initially spindle-shaped with irregular processes. On day 28 after TGF-β1 treatment, MSCs showed fusiform shape, orientating parallel with one another, and were connected with adjoining cells forming myotube-like structures. Immunofluorescence revealed the expression of cardiomyocyte-specific proteins, α-sarcomeric actin and troponin T, in these cells. The mRNA expression of GATA4 and Nkx2.5 genes was slightly increased on day 7, enhanced on day 14 and decreased on day 28 while α-MHC gene was not expressed on day 7, but expressed slightly on day 14 and enhanced on day 28. Transmission electron microscopy showed that the induced cells had myofilaments, z line-like substances, desmosomes, and gap junctions, in contrast with control cells. Furthermore, intramyocardial implantation of TGF-β1-treated MSCs to infarcted heart reduced scar area and increased the number of muscle cells. This structure regeneration was concomitant with the improvement of cardiac function, evidenced by decreased left ventricular end-diastolic pressure, increased left ventricular systolic pressure and increased maximal positive pressure development rate. Taken together, these results indicate that intramyocardial implantation of differentiated MSCs enhanced by TGF-β1 improved cardiac function in heart failure rats

    Oogenesis in summer females of the rice water weevil, Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae), in southern Zhejiang, China

    No full text
    The rice water weevil, Lissorhoptrus oryzophilus Kuschel, has two generations in southern Zhejiang, China. To determine oogenesis in first-generation females (summer females) and its relations to temperature, females were collected from a rice field in early and mid-July and reared on young rice plants at 28, 31 and 34 °C in the laboratory. Percentage of females having oocytes, number of oocytes of different stages (stage-I, from early previtellogenesis to middle vitellogenesis; stage-II, late vitellogenesis; and mature-oocyte stage), and length of ovarioles were determined every 10 d of feeding. At each temperature, oogenesis took place in over 40% of females after 20~40 d of feeding, but only 0.0~3.3 stage-I, 0.0~0.8 stage-II and 0.0~1.1 mature oocytes were observed at each observation date. Temperature had significant effect on number of stage-I oocytes but not on number of stage-II and mature oocytes in early July females; temperature had no significant effect on number of oocytes of either stage in mid-July females. Conclusively, in southern Zhejiang, summer L. oryzophilus females have great potential to become reproductive on rice, but their oogenesis activity is very low, with the overall procedures little affected by temperature

    Standardization in Quantitative Imaging: A Multicenter Comparison of Radiomic Features from Different Software Packages on Digital Reference Objects and Patient Data Sets

    No full text
    Radiomic features are being increasingly studied for clinical applications. We aimed to assess the agreement among radiomic features when computed by several groups by using different software packages under very tightly controlled conditions, which included standardized feature definitions and common image data sets. Ten sites (9 from the NCI\u27s Quantitative Imaging Network] positron emission tomography–computed tomography working group plus one site from outside that group) participated in this project. Nine common quantitative imaging features were selected for comparison including features that describe morphology, intensity, shape, and texture. The common image data sets were: three 3D digital reference objects (DROs) and 10 patient image scans from the Lung Image Database Consortium data set using a specific lesion in each scan. Each object (DRO or lesion) was accompanied by an already-defined volume of interest, from which the features were calculated. Feature values for each object (DRO or lesion) were reported. The coefficient of variation (CV), expressed as a percentage, was calculated across software packages for each feature on each object. Thirteen sets of results were obtained for the DROs and patient data sets. Five of the 9 features showed excellent agreement with CV < 1%; 1 feature had moderate agreement (CV < 10%), and 3 features had larger variations (CV ≥ 10%) even after attempts at harmonization of feature calculations. This work highlights the value of feature definition standardization as well as the need to further clarify definitions for some features
    • …
    corecore