7 research outputs found

    Carbon nanotubes for coherent spintronic devices

    Get PDF
    Carbon nanotubes bridge the molecular and crystalline quantum worlds, and their extraordinary electronic, mechanical and optical properties have attracted enormous attention from a broad scientific community. We review the basic principles of fabricating spin-electronic devices based on individual, electrically-gated carbon nanotubes, and present experimental efforts to understand their electronic and nuclear spin degrees of freedom, which in the future may enable quantum applications.Comment: 17 pages, 9 figures, submitted to Materials Toda

    Vibration induced memory effects and switching in ac-driven molecular nanojunctions

    Get PDF
    We investigate bistability and memory effects in a molecular junction weakly coupled to metallic leads with the latter being subject to an adiabatic periodic change of the bias voltage. The system is described by a simple Anderson-Holstein model and its dynamics is calculated via a master equation approach. The controlled electrical switching between the many-body states of the system is achieved due to polaron shift and Franck-Condon blockade in the presence of strong electron-vibron interaction. Particular emphasis is given to the role played by the excited vibronic states in the bistability and hysteretic switching dynamics as a function of the voltage sweeping rates. In general, both the occupation probabilities of the vibronic states and the associated vibron energy show hysteretic behaviour for driving frequencies in a range set by the minimum and maximum lifetimes of the system. The consequences on the transport properties for various driving frequencies and in the limit of DC-bias are also investigated.Comment: 15 pages, 20 figures, published versio
    corecore