15 research outputs found

    Urinary active transforming growth factor ß in feline chronic kidney disease

    Get PDF
    The cytokine transforming growth factor beta 1 (TGF-ÎČ1) has been widely implicated in the development and progression of renal fibrosis in chronic kidney disease (CKD) in humans and in experimental models. The aims of this study were to assess the association between urinary active TGF-ÎČ1 and (a) development of CKD in a cross-sectional study, (b) deterioration of renal function over 1 year in a longitudinal study, and (c) renal histopathological parameters in cats. A human active TGF-ÎČ1 ELISA was validated for use in feline urine. Cross-sectional analysis revealed no significant difference in urinary active TGF-ÎČ1:creatinine ratio (aTGF-ÎČ1:UCr) between groups with differing renal function. Longitudinally, non-azotaemic cats that developed CKD demonstrated a significant (P = 0.028) increase in aTGF-ÎČ1:UCr approximately 6 months before the development of azotaemia, which remained elevated (P = 0.046) at diagnosis (approximately 12 months prior, 8.4 pg/mg; approximately 6 months prior, 22.2 pg/mg; at CKD diagnosis, 24.6 pg/mg). In the histopathology study, aTGF-ÎČ1:UCr was significantly higher in cats with moderate (P = 0.02) and diffuse (P = 0.005) renal fibrosis than in cats without fibrosis. Cats with moderate renal inflammation had significantly higher urinary active aTGF-ÎČ1 concentrations than cats with mild (P = 0.035) or no inflammatory change (P = 0.004). The parameter aTGF-ÎČ1:UCr was independently associated with Log urine protein:creatinine ratio in a multivariable analysis of clinicopathological parameters and interstitial fibrosis score in a multivariable analysis of histopathological features. These results suggest that urinary aTGF-ÎČ1 reflects the severity of renal pathology. Increases in urinary aTGF-ÎČ1 followed longitudinally in individual cats may indicate the development of CKD

    Characterisation of Crandell-Rees Feline Kidney (CRFK) cells as mesenchymal in phenotype

    Get PDF
    The Crandell-Rees Feline Kidney Cell (CRFK) is an immortalised cell line derived from the feline kidney that is utilised for the growth of certain vaccinal viruses. Confusion exists as to whether CRFK are epithelial or mesenchymal in phenotype. The aim of this study was to characterise CRFK cells via immunofluorescence, enzyme cytochemistry, western blotting, RT-qPCR for S100A4 and comparison to primary feline proximal tubular epithelial cells (FPTEC) and feline cortical fibroblasts (FCF). CRFK cells were of fusiform morphology and appeared similar to FCF. CRFK expressed the mesenchymal intermediate filament (IF) protein vimentin together with two cell adhesion molecules associated with feline fibroblasts (CD29 and CD44), and lacked expression of the epithelial IF cytokeratin, myogenic IF desmin and endothelial marker von Willebrand factor (vWF). In addition, CRFK did not demonstrate brush border enzyme activity typical of FPTEC. S100A4 gene expression, implicated in both neoplastic transformation and epithelial to mesenchymal transition, was highly upregulated in CRFK in comparison to the primary feline renal cells. CRFK appear phenotypically similar to fibroblasts, rather than tubular epithelial cells, and may have undergone neoplastic transformation or epithelial-to-mesenchymal transition after extensive passaging. This finding may have potential implications for future research utilising this cell line

    Risk Factors for Development of Chronic Kidney Disease in Cats

    Get PDF
    BACKGROUND: Identification of risk factors for development of chronic kidney disease (CKD) in cats may aid in its earlier detection. HYPOTHESIS/OBJECTIVES: Evaluation of clinical and questionnaire data will identify risk factors for development of azotemic CKD in cats. ANIMALS: One hundred and forty‐eight client‐owned geriatric (>9 years) cats. METHODS: Cats were recruited into the study and followed longitudinally for a variable time. Owners were asked to complete a questionnaire regarding their pet at enrollment. Additional data regarding dental disease were obtained when available by development of a dental categorization system. Variables were explored in univariable and multivariable Cox regression models. RESULTS: In the final multivariable Cox regression model, annual/frequent vaccination (P value, .003; hazard ratio, 5.68; 95% confidence interval, 1.83–17.64), moderate dental disease (P value, .008; hazard ratio, 13.83; 95% confidence interval, 2.01–94.99), and severe dental disease (P value, .001; hazard ratio, 35.35; 95% confidence interval, 4.31–289.73) predicted development of azotemic CKD. CONCLUSION: Our study suggests independent associations between both vaccination frequency and severity of dental disease and development of CKD. Further studies to explore the pathophysiological mechanism of renal injury for these risk factors are warranted

    Influences de la sylviculture sur le risque de dégùts biotiques et abiotiques dans les peuplements forestiers

    Full text link
    corecore