58 research outputs found

    Bond graph modelling of chemoelectrical energy transduction

    Get PDF
    Energy-based bond graph modelling of biomolecular systems is extended to include chemoelectrical transduction thus enabling integrated thermodynamically-compliant modelling of chemoelectrical systems in general and excitable membranes in particular. Our general approach is illustrated by recreating a well-known model of an excitable membrane. This model is used to investigate the energy consumed during a membrane action potential thus contributing to the current debate on the trade-off between the speed of an action potential event and energy consumption. The influx of Na+ is often taken as a proxy for energy consumption; in contrast, this paper presents an energy based model of action potentials. As the energy based approach avoids the assumptions underlying the proxy approach it can be directly used to compute energy consumption in both healthy and diseased neurons. These results are illustrated by comparing the energy consumption of healthy and degenerative retinal ganglion cells using both simulated and in vitro data

    Modeling the Dynamics of Large Diameter Doubly Curved Shells made from Thin-Films

    No full text

    Persistent Listeria monocytogenes strains isolated from mussel production facilities form more biofilm but are not linked to specific genetic markers

    Get PDF
    Contamination of mussels with the human pathogen Listeria monocytogenes occurs during processing in the factory, possibly from bacteria persisting in the factory's indoor and outdoor areas. In this study, a selection of persistent (n = 8) and sporadic (n = 8) L. monocytogenes isolates associated with mussel-processing premises in New Zealand were investigated for their phenotypic and genomic characteristics. To identify traits that favour or contribute to bacterial persistence, biofilm formation, heat resistance, motility and recovery from dry surfaces were compared between persistent and sporadic isolates. All isolates exhibited low biofilm formation at 20 °C, however, at 30 °C persistent isolates showed significantly higher biofilm formation after 48 h using cell enumeration and near significant difference using the crystal violet assay. All 16 isolates were motile at 20 °C and 30 °C and motility was fractionally higher for sporadic isolates, but no significant difference was observed. We found persistent isolates tend to exhibit greater recovery after incubation on dry surfaces compared to sporadic isolates. Two of the three most heat-resistant isolates were persistent, while four of five isolates lacking heat resistance were sporadic isolates. Comparison of genome sequences of persistent and sporadic isolates showed that there was no overall clustering of persistent or sporadic isolates, and that differences in prophages and plasmids were not associated with persistence. Our results suggest a link between persistence and biofilm formation, which is most likely multifactorial, combining subtle phenotypic and genotypic differences between isolates.</p
    • …
    corecore