7 research outputs found

    ЗагрязнСниС Π²ΠΎΠ·Π΄ΡƒΡ…Π° Π² Кигали, Π ΡƒΠ°Π½Π΄Π°: пространствСнная ΠΈ врСмСнная ΠΈΠ·ΠΌΠ΅Π½Ρ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ, влияниС источников ΠΈ влияниС воскрСсСний, свободных ΠΎΡ‚ Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΉ

    No full text
    Ambient air pollution, particularly fine particulate mass (PM2.5) and ozone (O3), is associated with premature human mortality and other health effects, but monitoring is scarce to non-existent in large parts of Africa. Lower-cost real-time affordable multi-pollutant (RAMP) monitors and a black carbon (BC) monitor were deployed in Kigali, Rwanda to fill the air quality data gap here. PM2.5 data were corrected using data from a coincident, short-term campaign that used standard filter-based gravimetry, while gas data were verified by collocation with reference carbon monoxide (CO) and O3 monitors at the Rwanda Climate Observatory at Mt Mugogo, Rwanda. Over March 2017-July 2018, the ambient average PM2.5 in Kigali was 52 Β΅g/m3, significantly higher than World Health Organization (WHO) Interim Target 1. Study average BC was 4 Β΅g/m3, comparable to mid-sized urban areas in India and China and significantly higher than BC in cities in developed countries. Spatial variability across various urban background sites in Kigali appears to be limited, while PM2.5 at Mt Mugogo is moderately correlated with PM2.5 in Kigali. A sharp diurnal profile is observed in both PM2.5 and BC, with the Absorption Angstrom Exponent (AAE) indicating that the morning peak is associated with rush-hour traffic-related air pollution (TRAP) while the late evening peak can be attributed to both traffic and domestic biofuel use. PM2.5 in the dry seasons is about two times PM2.5 during the following wet seasons while BC is 40-60% higher. Local sources contribute at least half the ambient PM2.5 during wet seasons and one-fourth during dry seasons. Traffic restrictions on some Sundays appear to reduce PM2.5 and BC by 10-12 Β΅g/m3 and 1 Β΅g/m3 respectively, but this needs further investigation. Dry season ozone in Kigali can exceed WHO guidelines. These lower cost monitors can play an important role in the continued monitoring essential to track the effectiveness of pollution-control policies recently implemented in Rwanda.ЗагрязнСниС ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰Π΅Π³ΠΎ Π²ΠΎΠ·Π΄ΡƒΡ…Π°, особСнно мСлкодиспСрсными частицами (PM2,5) ΠΈ ΠΎΠ·ΠΎΠ½ΠΎΠΌ (O3), связано с ΠΏΡ€Π΅ΠΆΠ΄Π΅Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΡΠΌΠ΅Ρ€Ρ‚Π½ΠΎΡΡ‚ΡŒΡŽ людСй ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ послСдствиями для Π·Π΄ΠΎΡ€ΠΎΠ²ΡŒΡ, Π½ΠΎ ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³ являСтся нСдостаточным ΠΈΠ»ΠΈ Π²ΠΎΠΎΠ±Ρ‰Π΅ отсутствуСт Π² Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ части Африки. Π’ Кигали, Π ΡƒΠ°Π½Π΄Π°, для восполнСния ΠΏΡ€ΠΎΠ±Π΅Π»ΠΎΠ² Π² Π΄Π°Π½Π½Ρ‹Ρ… ΠΎ качСствС Π²ΠΎΠ·Π΄ΡƒΡ…Π° Π±Ρ‹Π»ΠΈ Ρ€Π°Π·Π²Π΅Ρ€Π½ΡƒΡ‚Ρ‹ Π½Π΅Π΄ΠΎΡ€ΠΎΠ³ΠΈΠ΅ доступныС Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€Ρ‹ с нСсколькими загрязнитСлями (RAMP) ΠΈ ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ саТи (BC). Π”Π°Π½Π½Ρ‹Π΅ PM2.5 Π±Ρ‹Π»ΠΈ скоррСктированы с использованиСм Π΄Π°Π½Π½Ρ‹Ρ… ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‰Π΅ΠΉ краткосрочной ΠΊΠ°ΠΌΠΏΠ°Π½ΠΈΠΈ, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ использовалась стандартная гравимСтрия Π½Π° основС Ρ„ΠΈΠ»ΡŒΡ‚Ρ€ΠΎΠ², Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ Π³Π°Π·Π΅ Π±Ρ‹Π»ΠΈ ΠΏΡ€ΠΎΠ²Π΅Ρ€Π΅Π½Ρ‹ ΠΏΡƒΡ‚Π΅ΠΌ сопоставлСния с эталонными ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€Π°ΠΌΠΈ монооксида ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π° (CO) ΠΈ O3 Π² Руандийской климатичСской обсСрватории Π½Π° Π³ΠΎΡ€Π΅ ΠœΡƒΠ³ΠΎΠ³ΠΎ, Π ΡƒΠ°Π½Π΄Π°. Π—Π° ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ с ΠΌΠ°Ρ€Ρ‚Π° 2017 Π³ΠΎΠ΄Π° ΠΏΠΎ июль 2018 Π³ΠΎΠ΄Π° срСднСС содСрТаниС PM2.5 Π² Кигали составило 52 ΠΌΠΊΠ³/ΠΌ3, Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π΅Ρ‚ ΠŸΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½Ρ‹ΠΉ Ρ†Π΅Π»Π΅Π²ΠΎΠΉ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒ 1 ВсСмирной ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ здравоохранСния (Π’ΠžΠ—). Π‘Ρ€Π΅Π΄Π½Π΅Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ BC Π² исслСдовании составило 4 ΠΌΠΊΠ³/ΠΌ3, Ρ‡Ρ‚ΠΎ сопоставимо с городскими Ρ€Π°ΠΉΠΎΠ½Π°ΠΌΠΈ срСднСго Ρ€Π°Π·ΠΌΠ΅Ρ€Π° Π² Индии ΠΈ ΠšΠΈΡ‚Π°Π΅ ΠΈ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π²Ρ‹ΡˆΠ΅, Ρ‡Π΅ΠΌ BC Π² Π³ΠΎΡ€ΠΎΠ΄Π°Ρ… Ρ€Π°Π·Π²ΠΈΡ‚Ρ‹Ρ… стран. ΠŸΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΡ‚Π²Π΅Π½Π½Π°Ρ ΠΈΠ·ΠΌΠ΅Π½Ρ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ городскими Ρ„ΠΎΠ½ΠΎΠ²Ρ‹ΠΌΠΈ участками Π² Кигали, ΠΏΠΎ-Π²ΠΈΠ΄ΠΈΠΌΠΎΠΌΡƒ, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π°, Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ PM2.5 Π½Π° Π³ΠΎΡ€Π΅ ΠœΡƒΠ³ΠΎΠ³ΠΎ ΡƒΠΌΠ΅Ρ€Π΅Π½Π½ΠΎ ΠΊΠΎΡ€Ρ€Π΅Π»ΠΈΡ€ΡƒΠ΅Ρ‚ с PM2.5 Π² Кигали. Π Π΅Π·ΠΊΠΈΠΉ суточный ΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŒ Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ ΠΊΠ°ΠΊ для PM2.5, Ρ‚Π°ΠΊ ΠΈ для BC, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒ поглощСния Π² ангстрСмах (AAE) ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠΉ ΠΏΠΈΠΊ связан с загрязнСниСм Π²ΠΎΠ·Π΄ΡƒΡ…Π° Π² час ΠΏΠΈΠΊ, связанным с Π΄ΠΎΡ€ΠΎΠΆΠ½Ρ‹ΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ (TRAP), Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ ΠΏΠΎΠ·Π΄Π½ΠΈΠΉ Π²Π΅Ρ‡Π΅Ρ€Π½ΠΈΠΉ ΠΏΠΈΠΊ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ связан ΠΊΠ°ΠΊ с Π΄ΠΎΡ€ΠΎΠΆΠ½Ρ‹ΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ, Ρ‚Π°ΠΊ ΠΈ с Π±Ρ‹Ρ‚ΠΎΠ²Ρ‹ΠΌ использованиСм Π±ΠΈΠΎΡ‚ΠΎΠΏΠ»ΠΈΠ²Π°. PM2.5 Π² сухой сСзон ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ Π² Π΄Π²Π° Ρ€Π°Π·Π° ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π΅Ρ‚ PM2.5 Π² ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ Π²Π»Π°ΠΆΠ½Ρ‹Π΅ сСзоны, Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ BC Π½Π° 40-60% Π²Ρ‹ΡˆΠ΅. На долю мСстных источников приходится ΠΏΠΎ мСньшСй ΠΌΠ΅Ρ€Π΅ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π° атмосфСрного PM2.5 Π²ΠΎ Π²Π»Π°ΠΆΠ½Ρ‹Π΅ сСзоны ΠΈ ΠΎΠ΄Π½Π° Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΡŒ Π² Π·Π°ΡΡƒΡˆΠ»ΠΈΠ²Ρ‹Π΅ сСзоны. ΠžΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΡ двиТСния Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π²ΠΎΡΠΊΡ€Π΅ΡΠ΅Π½ΡŒΡ, ΠΏΠΎ-Π²ΠΈΠ΄ΠΈΠΌΠΎΠΌΡƒ, ΡΠ½ΠΈΠΆΠ°ΡŽΡ‚ PM2.5 ΠΈ BC Π½Π° 10-12 ΠΌΠΊΠ³/ΠΌ3 ΠΈ 1 ΠΌΠΊΠ³/ΠΌ3 соотвСтствСнно, Π½ΠΎ это Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ дальнСйшСго изучСния. Озон Π² сухой сСзон Π² Кигали ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Ρ‚ΡŒ Π½ΠΎΡ€ΠΌΡ‹ Π’ΠžΠ—. Π­Ρ‚ΠΈ ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€Ρ‹ с Π½ΠΈΠ·ΠΊΠΈΠΌ ΡƒΡ€ΠΎΠ²Π½Π΅ΠΌ выбросов ΠΌΠΎΠ³ΡƒΡ‚ ΡΡ‹Π³Ρ€Π°Ρ‚ΡŒ Π²Π°ΠΆΠ½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠΌ ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π΅, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠΌ для отслСТивания эффСктивности ΠΏΠΎΠ»ΠΈΡ‚ΠΈΠΊΠΈ Π±ΠΎΡ€ΡŒΠ±Ρ‹ с загрязнСниСм, Π½Π΅Π΄Π°Π²Π½ΠΎ Π²Π½Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠΉ Π² Π ΡƒΠ°Π½Π΄Π΅

    Cyclooxygenase-2 Inhibitors as a Therapeutic Target in Inflammatory Diseases

    No full text

    Astrobiology and the possibility of life on Earth and elsewhere…

    No full text
    Astrobiology is an interdisciplinary scientific field not only focused on the search of extraterrestrial life, but also on deciphering the key environmental parameters that have enabled the emergence of life on Earth. Understanding these physical and chemical parameters is fundamental knowledge necessary not only for discovering life or signs of life on other planets, but also for understanding our own terrestrial environment. Therefore, astrobiology pushes us to combine different perspectives such as the conditions on the primitive Earth, the physicochemical limits of life, exploration of habitable environments in the Solar System, and the search for signatures of life in exoplanets. Chemists, biologists, geologists, planetologists and astrophysicists are contributing extensively to this interdisciplinary research field. From 2011 to 2014, the European Space Agency (ESA) had the initiative to gather a Topical Team of interdisciplinary scientists focused on astrobiology to review the profound transformations in the field that have occurred since the beginning of the new century. The present paper is an interdisciplinary review of current research in astrobiology, covering the major advances and main outlooks in the field. The following subjects will be reviewed and most recent discoveries will be highlighted: the new understanding of planetary system formation including the specificity of the Earth among the diversity of planets, the origin of water on Earth and its unique combined properties among solvents for the emergence of life, the idea that the Earth could have been habitable during the Hadean Era, the inventory of endogenous and exogenous sources of organic matter and new concepts about how chemistry could evolve towards biological molecules and biological systems. In addition, many new findings show the remarkable potential life has for adaptation and survival in extreme environments. All those results from different fields of science are guiding our perspectives and strategies to look for life in other Solar System objects as well as beyond, in extrasolar worlds
    corecore