7 research outputs found

    Avalanches in the Weakly Driven Frenkel-Kontorova Model

    Full text link
    A damped chain of particles with harmonic nearest-neighbor interactions in a spatially periodic, piecewise harmonic potential (Frenkel-Kontorova model) is studied numerically. One end of the chain is pulled slowly which acts as a weak driving mechanism. The numerical study was performed in the limit of infinitely weak driving. The model exhibits avalanches starting at the pulled end of the chain. The dynamics of the avalanches and their size and strength distributions are studied in detail. The behavior depends on the value of the damping constant. For moderate values a erratic sequence of avalanches of all sizes occurs. The avalanche distributions are power-laws which is a key feature of self-organized criticality (SOC). It will be shown that the system selects a state where perturbations are just able to propagate through the whole system. For strong damping a regular behavior occurs where a sequence of states reappears periodically but shifted by an integer multiple of the period of the external potential. There is a broad transition regime between regular and irregular behavior, which is characterized by multistability between regular and irregular behavior. The avalanches are build up by sound waves and shock waves. Shock waves can turn their direction of propagation, or they can split into two pulses propagating in opposite directions leading to transient spatio-temporal chaos. PACS numbers: 05.70.Ln,05.50.+q,46.10.+zComment: 33 pages (RevTex), 15 Figures (available on request), appears in Phys. Rev.

    Critical States in a Dissipative Sandpile Model

    Full text link
    A directed dissipative sandpile model is studied in the two-dimension. Numerical results indicate that the long time steady states of this model are critical when grains are dropped only at the top or, everywhere. The critical behaviour is mean-field like. We discuss the role of infinite avalanches of dissipative models in periodic systems in determining the critical behaviour of same models in open systems.Comment: 4 pages (Revtex), 5 ps figures (included

    On Synchronization in a Lattice Model of Pulse-Coupled Oscillators

    Full text link
    We analyze the collective behavior of a lattice model of pulse-coupled oscillators. By means of computer simulations we find the relation between the intrinsic dynamics of each member of the population and their mutual interaction that ensures, in a general context, the existence of a fully synchronized regime. This condition turns out to be the same than the obtained for the globally coupled population. When the condition is not completely satisfied we find different spatial structures. This also gives some hints about self-organized criticality.Comment: 4 pages, RevTex, 1 PostScript available upon request, To appear in Phys. Rev. Let
    corecore