13 research outputs found

    Systematic studies on TiO<sub>2</sub>-based phosphopeptide enrichment procedures upon in-solution and in-gel digestions of proteins. Are there readily applicable protocols suitable for matrix-assisted laser desorption/ionization mass spectrometry-based ph

    No full text
    There have been many successful efforts to enrich phosphopeptides in complex protein mixtures by the use of immobilized metal affinity chromatography (IMAC) and/or metal oxide affinity chromatography (MOAC) with which mass spectrometric analysis of phosphopeptides has become state of the art in specialized laboratories, mostly applying nanoLC electrospray ionization mass spectrometry-based investigations. However, widespread use of these powerful techniques is still not achieved. In this study, we present a ready-to-use phosphopeptide enrichment procedure using commercially available TiO(2)-loaded pipette tips in combination with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analyses. Using &alpha;-casein as a model protein and citric acid as additive during sample loading, a similar enrichment success can be achieved as compared to applying 2,5- dihydroxy benzoic acid (DHB) for this task. But the DHB-inherited drawbacks are eliminated. In addition, we show that combining DHB and 2,4,6-trihydroxy acetophenone (THAP) as matrix for MALDI-MS measurements retains the sensitivity of DHB for phosphopeptide analysis but adds the homogenous crystallization properties of THAP, enabling preparation of evenly distributed matrix surfaces on MALDI-MS anchor targets, a prerequisite for automated MALDI- MS analyses. Tripartite motif-containing protein 28 and stathmin are two examples for which successful phosphopeptide enrichment of either sodium dodecyl sulfate polyacrylamide gel electrophoresis or two-dimensional gel electrophoresis-separated proteins is shown. Finally, high resolution MALDI Fourier transform ion cyclotron resonance mass spectrometry after phosphopeptide enrichment suggests that chemical dephosphorylation may occur as a side reaction during basic elution of phosphopeptides bound to MOAC surfaces, suggesting that proteome-wide phosphopeptide analyses ought to be interpreted with caution. In contrast, in-depth analysis of phosphopeptide/non-phosphorylated peptide siblings may be used to estimate stability differences of phosphorylation sites in individual proteins, possibly adding valuable information on biological regulation processes

    Cell type specificity of signaling: View from membrane receptors distribution and their downstream transduction networks.

    No full text
    Studies on cell signaling pay more attention to spatial dynamics and how such diverse organization can relate to high order of cellular capabilities. To overview the specificity of cell signaling, we integrated human receptome data with proteome spatial expression profiles to systematically investigate the specificity of receptors and receptor-triggered transduction networks across 62 normal cell types and 14 cancer types. Six percent receptors showed cell-type-specific expression, and 4% signaling networks presented enriched cell-specific proteins induced by the receptors. We introduced a concept of &quot;response context&quot; to annotate the cell-type dependent signaling networks. We found that most cells respond similarly to the same stimulus, as the &quot;response contexts&quot; presented high functional similarity. Despite this, the subtle spatial diversity can be observed from the difference in network architectures. The architecture of the signaling networks in nerve cells displayed less completeness than that in glandular cells, which indicated cellular-context dependent signaling patterns are elaborately spatially organized. Likewise, in cancer cells most signaling networks were generally dysfunctional and less complete than that in normal cells. However, glioma emerged hyper-activated transduction mechanism in malignant state. Receptor ATP6AP2 and TNFRSF21 induced rennin-angiotensin and apoptosis signaling were found likely to explain the glioma-specific mechanism. This work represents an effort to decipher context-specific signaling network from spatial dimension. Our results indicated that although a majority of cells engage general signaling response with subtle differences, the spatial dynamics of cell signaling can not only deepen our insights into different signaling mechanisms, but also help understand cell signaling in disease

    Activation of c-Jun NH 2-Terminal Kinase/Stress-activated Protein Kinase (JNK/SAPK) Is Critical for Hypoxia-induced Apoptosis of Human Malignant Melanoma 1

    No full text
    Mitogen-activated protein kinase (MAPK) signaling was examined in malignant melanoma cells exposed to hypoxia. Here we demonstrate that hypoxia induced a strong activation of the c-Jun NH 2-terminal kinase (JNK), also termed stress-activated protein kinase (SAPK), in the melanoma cell line 530 in vitro. Other members of the MAPK family, e.g., extracellular signalregulated kinase and p38, remained unaffected by the hypoxic stimulus. Activated JNK/SAPK could also be observed in the vicinity of hypoxic tumor areas in melanoma metastases as detected by immunohistochemistry. Functional analysis of JNK/SAPK activation in the melanoma cell line 530 revealed that activation of JNK/SAPK is involved i

    Activation of c-Jun NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK) is critical for hypoxia-induced apoptosis of human malignant melanoma.

    No full text
    Item does not contain fulltextMitogen-activated protein kinase (MAPK) signaling was examined in malignant melanoma cells exposed to hypoxia. Here we demonstrate that hypoxia induced a strong activation of the c-Jun NH2-terminal kinase (JNK), also termed stress-activated protein kinase (SAPK), in the melanoma cell line 530 in vitro. Other members of the MAPK family, e.g., extracellular signal-regulated kinase and p38, remained unaffected by the hypoxic stimulus. Activated JNK/SAPK could also be observed in the vicinity of hypoxic tumor areas in melanoma metastases as detected by immunohistochemistry. Functional analysis of JNK/SAPK activation in the melanoma cell line 530 revealed that activation of JNK/SAPK is involved in hypoxia-mediated tumor cell apoptosis. Both a dominant negative mutant of JNK/SAPK (SAPKbeta K-->R) and a dominant negative mutant of the immediate upstream activator of JNK/SAPK, SEK1 (SEK1 K-->R), inhibited hypoxia-induced apoptosis in transient transfection studies. In contrast, overexpression of the wild-type kinases had a slight proapoptotic effect. Inhibition of extracellular signal-regulated kinase and p38 pathways by the chemical inhibitors PD98058 and SB203580, respectively, had no effect on hypoxiainduced apoptosis. Under normoxic conditions, no influence on apoptosis regulation was observed after inhibition of all three MAPK pathways. In contrast to recent findings, JNK/SAPK activation did not correlate with Fas or Fas ligand (FasL) expression, suggesting that the Fas/FasL system is not involved in hypoxia-induced apoptosis in melanoma cells. Taken together, our data demonstrate that hypoxia-induced JNK/SAPK activation appears to play a critical role in apoptosis regulation of melanoma cells in vitro and in vivo, independent of the Fas/FasL system
    corecore