9 research outputs found

    A Brief History of Dark Energy

    Full text link
    Gurzadyan-Xue Dark Energy was derived in 1986 (twenty years before the paper of Gurzadyan-Xue). The paper by the present author, titled The Planck Length as a Cosmological Constant, published in Astrophysics Space Science, Vol. 127, p.133-137, 1986 contains the formula claimed to have been derived by Gurzadyan-Xue (in 2003)

    Nonlinear electrodynamics and CMB polarization

    Full text link
    Recently WMAP and BOOMERanG experiments have set stringent constraints on the polarization angle of photons propagating in an expanding universe: Δα=(2.4±1.9)\Delta \alpha = (-2.4 \pm 1.9)^\circ. The polarization of the Cosmic Microwave Background radiation (CMB) is reviewed in the context of nonlinear electrodynamics (NLED). We compute the polarization angle of photons propagating in a cosmological background with planar symmetry. For this purpose, we use the Pagels-Tomboulis (PT) Lagrangian density describing NLED, which has the form L(X/Λ4)δ1  XL\sim (X/\Lambda^4)^{\delta - 1}\; X , where X=1/4FαβFαβX=1/4 F_{\alpha\beta} F^{\alpha \beta}, and δ\delta the parameter featuring the non-Maxwellian character of the PT nonlinear description of the electromagnetic interaction. After looking at the polarization components in the plane orthogonal to the (xx)-direction of propagation of the CMB photons, the polarization angle is defined in terms of the eccentricity of the universe, a geometrical property whose evolution on cosmic time (from the last scattering surface to the present) is constrained by the strength of magnetic fields over extragalactic distances.Comment: 17 pages, 2 figures, minor changes, references adde

    Cosmological Model-independent Gamma-ray Bursts Calibration and its Cosmological Constraint to Dark Energy

    Full text link
    As so far, the redshift of Gamma-ray bursts (GRBs) can extend to z8z\sim 8 which makes it as a complementary probe of dark energy to supernova Ia (SN Ia). However, the calibration of GRBs is still a big challenge when they are used to constrain cosmological models. Though, the absolute magnitude of GRBs is still unknown, the slopes of GRBs correlations can be used as a useful constraint to dark energy in a completely cosmological model independent way. In this paper, we follow Wang's model-independent distance measurement method and calculate their values by using 109 GRBs events via the so-called Amati relation. Then, we use the obtained model-independent distances to constrain Λ\LambdaCDM model as an example.Comment: 16 pages, 5 figure

    Pulsar kicks from a dark-matter sterile neutrino

    Full text link
    We show that a sterile neutrino with mass in the 1-20 keV range and a small mixing with the electron neutrino can simultaneously explain the origin of the pulsar motions and the dark matter in the universe. An asymmetric neutrino emission from a hot nascent neutron star can be the explanation of the observed pulsar velocities. In addition to the pulsar kick mechanism based on resonant neutrino transitions, we point out a new possibility: an asymmetric off-resonant emission of sterile neutrinos. The two cases correspond to different values of the masses and mixing angles. In both cases we identify the ranges of parameters consistent with the pulsar kick, as well as cosmological constraints.Comment: 5 pages, 2 figures; final version; discussion and references adde

    Large-scale magnetic fields from inflation due to a CPTCPT-even Chern-Simons-like term with Kalb-Ramond and scalar fields

    Full text link
    We investigate the generation of large-scale magnetic fields due to the breaking of the conformal invariance in the electromagnetic field through the CPTCPT-even dimension-six Chern-Simons-like effective interaction with a fermion current by taking account of the dynamical Kalb-Ramond and scalar fields in inflationary cosmology. It is explicitly demonstrated that the magnetic fields on 1Mpc scale with the field strength of 109\sim 10^{-9}G at the present time can be induced.Comment: 18 pages, 6 figures, version accepted for publication in Eur. Phys. J.

    Reconstructing the Cosmic Expansion History up to Redshift z=6.29 with the Calibrated Gamma-Ray Bursts

    Full text link
    Recently, Gamma-Ray Bursts (GRBs) were proposed to be a complementary cosmological probe to type Ia supernovae (SNIa). GRBs have been advocated to be standard candles since several empirical GRB luminosity relations were proposed as distance indicators. However, there is a so-called circularity problem in the direct use of GRBs. Recently, a new idea to calibrate GRBs in a completely cosmology independent manner has been proposed, and the circularity problem can be solved. In the present work, following the method proposed by Liang {\it et al.}, we calibrate 70 GRBs with the Amati relation using 307 SNIa. Then, following the method proposed by Shafieloo {\it et al.}, we smoothly reconstruct the cosmic expansion history up to redshift z=6.29z=6.29 with the calibrated GRBs. We find some new features in the reconstructed results.Comment: 12 pages, 4 figures, 1 table, revtex4; v2: title changed, accepted by Eur. Phys. J. C; v3: published versio
    corecore