116 research outputs found

    The Impact of Strategic White Matter Hyperintensity Lesion Location on Language

    Get PDF
    Objective: The impact of white matter hyperintensities (WMH) on language possibly depends on lesion location through disturbance of strategic white matter tracts. We examined the impact of WMH location on language in elderly Asians. Design: Cross-sectional. Setting: Population-based. Participants: Eight-hundred nineteen residents of Singapore, ages (≥65 years). Measurements: Clinical, cognitive and 3T magnetic resonance imaging assessments were performed on all participants. Language was assessed using the Modified Boston Naming Test (MBNT) and Verbal Fluency (VF). Hypothesis-free region-of-interest-based (ROI) analyses based on major white matter tracts were used to determine the association between WMH location and language. Conditional dependencies between the regional WMH volumes and language were examined using Bayesian-network analysis. Results: ROI-based analyses showed that WMH located within the anterior thalamic radiation (mean difference: −0.12, 95% confidence interval [CI]: −0.22; −0.02, p = 0.019) and uncinate fasciculus (mean difference: −0.09, 95% CI: −0.18; −0.01, p = 0.022) in the left hemisphere were significantly associated with worse VF but did not survive multiple testing. Conversely, WMH volume in the left cingulum of cingulate gyrus was significantly associated with MBNT performance (mean difference: −0.09, 95% CI: −0.17; −0.02, p = 0.016). Bayesian-network analyses confirmed the left cingulum of cingulate gyrus as a direct determinant of MBNT performance. Conclusion: Our findings identify the left cingulum of cingulate gyrus as a strategic white matter tract for MBNT, suggesting that language – is sensitive to subcortical ischemic damage. Future studies on the role of sporadic ischemic lesions and vascular cognitive impairment should not only focus on total WMH volume but should also take WMH lesion location into account when addressing language

    Changes of airflow pattern in inferior turbinate hypertrophy: A computational fluid dynamics model

    No full text
    10.2500/ajra.2009.23.3287American Journal of Rhinology and Allergy232153-15

    Looking Behavior at Test and Relational Memory in 6-Month-Old Infants

    No full text
    10.1111/infa.12067Infancy20118-41GUSTO (Growing up towards Healthy Outcomes

    Feeling Positive About Reopening? New Normal Scenarios from COVID-19 Reopen Sentiment Analytics

    No full text
    The Coronavirus pandemic has created complex challenges and adverse circumstances. This research identifies public sentiment amidst problematic socioeconomic consequences of the lockdown, and explores ensuing four potential sentiment associated scenarios. The severity and brutality of COVID-19 have led to the development of extreme feelings, and emotional and mental healthcare challenges. This research focuses on emotional consequences - the presence of extreme fear, confusion and volatile sentiments, mixed along with trust and anticipation. It is necessary to gauge dominant public sentiment trends for effective decisions and policies. This study analyzes public sentiment using Twitter Data, time-aligned to the COVID-19 reopening debate, to identify dominant sentiment trends associated with the push to 'reopen' the economy. Present research uses textual analytics methodologies to analyze public sentiment support for two potential divergent scenarios - an early opening and a delayed opening, and consequences of each. Present research concludes on the basis of exploratory textual analytics and textual data visualization, that Tweets data from American Twitter users shows more positive sentiment support, than negative, for reopening the US economy. This research develops a novel sentiment polarity based four scenarios framework, which will remain useful for future crisis analysis, well beyond COVID-19. With additional validation, this research stream could present valuable time sensitive opportunities for state governments, the federal government, corporations and societal leaders to guide local and regional communities, and the nation into a successful new normal future

    Pfcyp51 exclusively determines reduced sensitivity to 14α-demethylase inhibitor fungicides in the banana black Sigatoka pathogen Pseudocercospora fijiensis

    No full text
    The haploid fungus Pseudocercospora fijiensis causes black Sigatoka in banana and is chiefly controlled by extensive fungicide applications, threatening occupational health and the environment. The 14α-Demethylase Inhibitors (DMIs) are important disease control fungicides, but they lose sensitivity in a rather gradual fashion, suggesting an underlying polygenic genetic mechanism. In spite of this, evidence found thus far suggests that P. fijiensis cyp51 gene mutations are the main responsible factor for sensitivity loss in the field. To better understand the mechanisms involved in DMI resistance, in this study we constructed a genetic map using DArTseq markers on two F1 populations generated by crossing two different DMI resistant strains with a sensitive strain. Analysis of the inheritance of DMI resistance in the F1 populations revealed two major and discrete DMI-sensitivity groups. This is an indicative of a single major responsible gene. Using the DMI-sensitivity scorings of both F1 populations and the generation of genetic linkage maps, the sensitivity causal factor was located in a single genetic region. Full agreement was found for genetic markers in either population, underlining the robustness of the approach. The two maps indicated a similar genetic region where the Pfcyp51 gene is found. Sequence analyses of the Pfcyp51 gene of the F1 populations also revealed a matching bimodal distribution with the DMI resistant. Amino acid substitutions in P. fijiensis CYP51 enzyme of the resistant progeny were previously correlated with the loss of DMI sensitivity. In addition, the resistant progeny inherited a Pfcyp51 gene promoter insertion, composed of a repeat element with a palindromic core, also previously correlated with increased gene expression. This genetic approach confirms that Pfcyp51 is the single explanatory gene for reduced sensitivity to DMI fungicides in the analysed P. fijiensis strains. Our study is the first genetic analysis to map the underlying genetic factors for reduced DMI efficacy.</p

    Homozygous founder mutation in desmocollin-2 (DSC2) causes arrhythmogenic cardiomyopathy in the Hutterite population

    No full text
    BACKGROUND: Dominant mutations in cellular junction proteins are the major cause of arrhythmogenic cardiomyopathy, whereas recessive mutations in those proteins cause cardiocutaneous syndromes such as Naxos and Carvajal syndrome. The Hutterites are distinct genetic isolates who settled in North America in 1874. Descended from T (p.Q554X) in desmocollin-2 (DSC2), in affected individuals and determined a carrier frequency of this mutation of 9.4% (1 in 10.6) among 1535 Schmiedeleut Hutterites, suggesting a common founder in that subgroup. Immunohistochemistry of endomyocardial biopsy samples revealed altered expression of the truncated DSC2 protein at the intercalated discs but only minor changes in immunoreactivity of other desmosomal proteins. Recombinant expressed mutant DSC2 protein in cells confirmed a stable, partially processed truncated protein with cytoplasmic and membrane localization. CONCLUSIONS: A homozygous truncation mutation in DSC2 leads to a cardiac-restricted phenotype of an early onset biventricular arrhythmogenic cardiomyopathy. The truncated protein remains partially stable and localized at the intercalated discs. These data suggest that the processed DSC2 protein plays a role in maintaining desmosome integrity and function
    corecore