5 research outputs found
ULIXES, unravelling and exploiting Mediterranean Sea microbial diversity and ecology for xenobiotics' and pollutants' clean up
The civilizations in the Mediterranean Sea have deeply changed the local environment, especially with the extraction of subsurface oil and gas, their refinery and transportation. Major environmental impacts are affecting all the sides of the basin with actual and potential natural and socio-economic problems. Events like the recent BP\u2019s oil disaster in the Gulf of Mexico would have a tremendous impact on a close basin like the Mediterranean Sea. The recently EU-funded project ULIXES (http://www.ulixes.unimi.it/) aims to unravel, categorize, catalogue, exploit and manage the microbial diversity available in the Mediterranean Sea for addressing bioremediation of polluted marine sites. The rationale of the project is based on the multiple diverse environmental niches of the Mediterranean Sea and the huge range of microorganisms inhabiting therein. Microbial consortia and their ecology, their components or products are used for designing novel pollutant- and site-tailored bioremediation approaches. ULIXES exploits microbial resource mining by the isolation of novel microorganisms as well as by novel advanced \u2018meta-omics\u2019 technologies for solving pollution of three major high priority pollutant classes, petroleum hydrocarbons, chlorinated compounds and heavy metals. A network of twelve European and Southern Mediterranean partners is exploring the microbial diversity and ecology associated to a large set of polluted environmental matrices including seashore sands, lagoons, harbors and deep-sea sediments, oil tanker shipwreck sites, as well as coastal and deep sea natural sites where hydrocarbon seepages occur. The mined collections are exploited for developing novel bioremediation processes to be tested in ex situ and in situ field bioremediation trials
Allochthonous bioaugmentation in ex situ treatment of crude oil-polluted sediments in the presence of an effective degrading indigenous microbiome
Oil-polluted sediment bioremediation depends on both physicochemical and biological parameters, but the effect of the latter cannot be evaluated without the optimization of the former. We aimed in optimizing the physicochemical parameters related to biodegradation by applying an ex-situ landfarming set-up combined with biostimulation to oil-polluted sediment, in order to determine the added effect of bioaugmentation by four allochthonous oil-degrading bacterial consortia in relation to the degradation efficiency of the indigenous community. We monitored hydrocarbon degradation, sediment ecotoxicity and hydrolytic activity, bacterial population sizes and bacterial community dynamics, characterizing the dominant taxa through time and at each treatment. We observed no significant differences in total degradation, but increased ecotoxicity between the different treatments receiving both biostimulation and bioaugmentation and the biostimulated-only control. Moreover, the added allochthonous bacteria quickly perished and were rarely detected, their addition inducing minimal shifts in community structure although it altered the distribution of the residual hydrocarbons in two treatments. Therefore, we concluded that biodegradation was mostly performed by the autochthonous populations while bioaugmentation, in contrast to biostimulation, did not enhance the remediation process. Our results indicate that when environmental conditions are optimized, the indigenous microbiome at a polluted site will likely outperform any allochthonous consortium