58 research outputs found
Diffusion Limited Aggregation with Power-Law Pinning
Using stochastic conformal mapping techniques we study the patterns emerging
from Laplacian growth with a power-law decaying threshold for growth
(where is the radius of the particle cluster). For
the growth pattern is in the same universality class as diffusion
limited aggregation (DLA) growth, while for the resulting patterns
have a lower fractal dimension than a DLA cluster due to the
enhancement of growth at the hot tips of the developing pattern. Our results
indicate that a pinning transition occurs at , significantly
smaller than might be expected from the lower bound
of multifractal spectrum of DLA. This limiting case shows that the most
singular tips in the pruned cluster now correspond to those expected for a
purely one-dimensional line. Using multifractal analysis, analytic expressions
are established for both close to the breakdown of DLA universality
class, i.e., , and close to the pinning transition, i.e.,
.Comment: 5 pages, e figures, submitted to Phys. Rev.
Convergent Calculation of the Asymptotic Dimension of Diffusion Limited Aggregates: Scaling and Renormalization of Small Clusters
Diffusion Limited Aggregation (DLA) is a model of fractal growth that had
attained a paradigmatic status due to its simplicity and its underlying role
for a variety of pattern forming processes. We present a convergent calculation
of the fractal dimension D of DLA based on a renormalization scheme for the
first Laurent coefficient of the conformal map from the unit circle to the
expanding boundary of the fractal cluster. The theory is applicable from very
small (2-3 particles) to asymptotically large (n \to \infty) clusters. The
computed dimension is D=1.713\pm 0.003
Singularites at a Dense Set of Temperature in Husimi Tree
We investigate complex temperature singularities of the three-site
interacting Ising model on the Husimi tree in the presentce of magnetic field.
We show that at certain magnetic field these singularities lie at a dense set
and as a consequence the phase transition condensation take place.Comment: ps file, 10 page
Does strange kinetics imply unusual thermodynamics?
We introduce a fractional Fokker-Planck equation (FFPE) for Levy flights in
the presence of an external field. The equation is derived within the framework
of the subordination of random processes which leads to Levy flights. It is
shown that the coexistence of anomalous transport and a potential displays a
regular exponential relaxation towards the Boltzmann equilibrium distribution.
The properties of the Levy-flight FFPE derived here are compared with earlier
findings for subdiffusive FFPE. The latter is characterized by a
non-exponential Mittag-Leffler relaxation to the Boltzmann distribution. In
both cases, which describe strange kinetics, the Boltzmann equilibrium is
reached and modifications of the Boltzmann thermodynamics are not required
New Algorithm for Parallel Laplacian Growth by Iterated Conformal Maps
We report a new algorithm to generate Laplacian Growth Patterns using
iterated conformal maps. The difficulty of growing a complete layer with local
width proportional to the gradient of the Laplacian field is overcome. The
resulting growth patterns are compared to those obtained by the best algorithms
of direct numerical solutions. The fractal dimension of the patterns is
discussed.Comment: Sumitted to Phys. Rev. Lett. Further details at
http://www.pik-potsdam.de/~ander
Scaling exponent of the maximum growth probability in diffusion-limited aggregation
An early (and influential) scaling relation in the multifractal theory of
Diffusion Limited Aggregation(DLA) is the Turkevich-Scher conjecture that
relates the exponent \alpha_{min} that characterizes the ``hottest'' region of
the harmonic measure and the fractal dimension D of the cluster, i.e.
D=1+\alpha_{min}. Due to lack of accurate direct measurements of both D and
\alpha_{min} this conjecture could never be put to serious test. Using the
method of iterated conformal maps D was recently determined as D=1.713+-0.003.
In this Letter we determine \alpha_{min} accurately, with the result
\alpha_{min}=0.665+-0.004. We thus conclude that the Turkevich-Scher conjecture
is incorrect for DLA.Comment: 4 pages, 5 figure
Effective dimensions and percolation in hierarchically structured scale-free networks
We introduce appropriate definitions of dimensions in order to characterize
the fractal properties of complex networks. We compute these dimensions in a
hierarchically structured network of particular interest. In spite of the
nontrivial character of this network that displays scale-free connectivity
among other features, it turns out to be approximately one-dimensional. The
dimensional characterization is in agreement with the results on statistics of
site percolation and other dynamical processes implemented on such a network.Comment: 5 pages, 5 figure
Two-dimensional Copolymers and Multifractality: Comparing Perturbative Expansions, MC Simulations, and Exact Results
We analyze the scaling laws for a set of two different species of long
flexible polymer chains joined together at one of their extremities (copolymer
stars) in space dimension D=2. We use a formerly constructed field-theoretic
description and compare our perturbative results for the scaling exponents with
recent conjectures for exact conformal scaling dimensions derived by a
conformal invariance technique in the context of D=2 quantum gravity. A simple
MC simulation brings about reasonable agreement with both approaches. We
analyse the remarkable multifractal properties of the spectrum of scaling
exponents.Comment: 5 page
A pseudo-spectral method for the Kardar-Parisi-Zhang equation
We discuss a numerical scheme to solve the continuum Kardar-Parisi-Zhang
equation in generic spatial dimensions. It is based on a momentum-space
discretization of the continuum equation and on a pseudo-spectral approximation
of the non-linear term. The method is tested in (1+1)- and (2+1)- dimensions,
where it is shown to reproduce the current most reliable estimates of the
critical exponents based on Restricted Solid-on-Solid simulations. In
particular it allows the computations of various correlation and structure
functions with high degree of numerical accuracy. Some deficiencies which are
common to all previously used finite-difference schemes are pointed out and the
usefulness of the present approach in this respect is discussed.Comment: 12 pages, 13 .eps figures, revetx4. A few equations have been
corrected. Erratum sent to Phys. Rev.
Scaling Analysis of Fluctuating Strength Function
We propose a new method to analyze fluctuations in the strength function
phenomena in highly excited nuclei. Extending the method of multifractal
analysis to the cases where the strength fluctuations do not obey power scaling
laws, we introduce a new measure of fluctuation, called the local scaling
dimension, which characterizes scaling behavior of the strength fluctuation as
a function of energy bin width subdividing the strength function. We discuss
properties of the new measure by applying it to a model system which simulates
the doorway damping mechanism of giant resonances. It is found that the local
scaling dimension characterizes well fluctuations and their energy scales of
fine structures in the strength function associated with the damped collective
motions.Comment: 22 pages with 9 figures; submitted to Phys. Rev.
- …