58 research outputs found

    Diffusion Limited Aggregation with Power-Law Pinning

    Full text link
    Using stochastic conformal mapping techniques we study the patterns emerging from Laplacian growth with a power-law decaying threshold for growth RN−γR_N^{-\gamma} (where RNR_N is the radius of the N−N- particle cluster). For γ>1\gamma > 1 the growth pattern is in the same universality class as diffusion limited aggregation (DLA) growth, while for γ<1\gamma < 1 the resulting patterns have a lower fractal dimension D(γ)D(\gamma) than a DLA cluster due to the enhancement of growth at the hot tips of the developing pattern. Our results indicate that a pinning transition occurs at γ=1/2\gamma = 1/2, significantly smaller than might be expected from the lower bound αmin≃0.67\alpha_{min} \simeq 0.67 of multifractal spectrum of DLA. This limiting case shows that the most singular tips in the pruned cluster now correspond to those expected for a purely one-dimensional line. Using multifractal analysis, analytic expressions are established for D(γ)D(\gamma) both close to the breakdown of DLA universality class, i.e., γ≲1\gamma \lesssim 1, and close to the pinning transition, i.e., γ≳1/2\gamma \gtrsim 1/2.Comment: 5 pages, e figures, submitted to Phys. Rev.

    Convergent Calculation of the Asymptotic Dimension of Diffusion Limited Aggregates: Scaling and Renormalization of Small Clusters

    Full text link
    Diffusion Limited Aggregation (DLA) is a model of fractal growth that had attained a paradigmatic status due to its simplicity and its underlying role for a variety of pattern forming processes. We present a convergent calculation of the fractal dimension D of DLA based on a renormalization scheme for the first Laurent coefficient of the conformal map from the unit circle to the expanding boundary of the fractal cluster. The theory is applicable from very small (2-3 particles) to asymptotically large (n \to \infty) clusters. The computed dimension is D=1.713\pm 0.003

    Singularites at a Dense Set of Temperature in Husimi Tree

    Full text link
    We investigate complex temperature singularities of the three-site interacting Ising model on the Husimi tree in the presentce of magnetic field. We show that at certain magnetic field these singularities lie at a dense set and as a consequence the phase transition condensation take place.Comment: ps file, 10 page

    Does strange kinetics imply unusual thermodynamics?

    Full text link
    We introduce a fractional Fokker-Planck equation (FFPE) for Levy flights in the presence of an external field. The equation is derived within the framework of the subordination of random processes which leads to Levy flights. It is shown that the coexistence of anomalous transport and a potential displays a regular exponential relaxation towards the Boltzmann equilibrium distribution. The properties of the Levy-flight FFPE derived here are compared with earlier findings for subdiffusive FFPE. The latter is characterized by a non-exponential Mittag-Leffler relaxation to the Boltzmann distribution. In both cases, which describe strange kinetics, the Boltzmann equilibrium is reached and modifications of the Boltzmann thermodynamics are not required

    New Algorithm for Parallel Laplacian Growth by Iterated Conformal Maps

    Full text link
    We report a new algorithm to generate Laplacian Growth Patterns using iterated conformal maps. The difficulty of growing a complete layer with local width proportional to the gradient of the Laplacian field is overcome. The resulting growth patterns are compared to those obtained by the best algorithms of direct numerical solutions. The fractal dimension of the patterns is discussed.Comment: Sumitted to Phys. Rev. Lett. Further details at http://www.pik-potsdam.de/~ander

    Scaling exponent of the maximum growth probability in diffusion-limited aggregation

    Full text link
    An early (and influential) scaling relation in the multifractal theory of Diffusion Limited Aggregation(DLA) is the Turkevich-Scher conjecture that relates the exponent \alpha_{min} that characterizes the ``hottest'' region of the harmonic measure and the fractal dimension D of the cluster, i.e. D=1+\alpha_{min}. Due to lack of accurate direct measurements of both D and \alpha_{min} this conjecture could never be put to serious test. Using the method of iterated conformal maps D was recently determined as D=1.713+-0.003. In this Letter we determine \alpha_{min} accurately, with the result \alpha_{min}=0.665+-0.004. We thus conclude that the Turkevich-Scher conjecture is incorrect for DLA.Comment: 4 pages, 5 figure

    Effective dimensions and percolation in hierarchically structured scale-free networks

    Get PDF
    We introduce appropriate definitions of dimensions in order to characterize the fractal properties of complex networks. We compute these dimensions in a hierarchically structured network of particular interest. In spite of the nontrivial character of this network that displays scale-free connectivity among other features, it turns out to be approximately one-dimensional. The dimensional characterization is in agreement with the results on statistics of site percolation and other dynamical processes implemented on such a network.Comment: 5 pages, 5 figure

    Two-dimensional Copolymers and Multifractality: Comparing Perturbative Expansions, MC Simulations, and Exact Results

    Full text link
    We analyze the scaling laws for a set of two different species of long flexible polymer chains joined together at one of their extremities (copolymer stars) in space dimension D=2. We use a formerly constructed field-theoretic description and compare our perturbative results for the scaling exponents with recent conjectures for exact conformal scaling dimensions derived by a conformal invariance technique in the context of D=2 quantum gravity. A simple MC simulation brings about reasonable agreement with both approaches. We analyse the remarkable multifractal properties of the spectrum of scaling exponents.Comment: 5 page

    A pseudo-spectral method for the Kardar-Parisi-Zhang equation

    Full text link
    We discuss a numerical scheme to solve the continuum Kardar-Parisi-Zhang equation in generic spatial dimensions. It is based on a momentum-space discretization of the continuum equation and on a pseudo-spectral approximation of the non-linear term. The method is tested in (1+1)- and (2+1)- dimensions, where it is shown to reproduce the current most reliable estimates of the critical exponents based on Restricted Solid-on-Solid simulations. In particular it allows the computations of various correlation and structure functions with high degree of numerical accuracy. Some deficiencies which are common to all previously used finite-difference schemes are pointed out and the usefulness of the present approach in this respect is discussed.Comment: 12 pages, 13 .eps figures, revetx4. A few equations have been corrected. Erratum sent to Phys. Rev.

    Scaling Analysis of Fluctuating Strength Function

    Get PDF
    We propose a new method to analyze fluctuations in the strength function phenomena in highly excited nuclei. Extending the method of multifractal analysis to the cases where the strength fluctuations do not obey power scaling laws, we introduce a new measure of fluctuation, called the local scaling dimension, which characterizes scaling behavior of the strength fluctuation as a function of energy bin width subdividing the strength function. We discuss properties of the new measure by applying it to a model system which simulates the doorway damping mechanism of giant resonances. It is found that the local scaling dimension characterizes well fluctuations and their energy scales of fine structures in the strength function associated with the damped collective motions.Comment: 22 pages with 9 figures; submitted to Phys. Rev.
    • …
    corecore