475 research outputs found

    Gluino Pair Production at Linear e^+e^- Colliders

    Get PDF
    We study the potential of high-energy linear e+ee^+e^- colliders for the production of gluino pairs within the Minimal Supersymmetric Standard Model (MSSM). In this model, the process e+eg~g~e^+e^-\to\tilde{g}\tilde{g} is mediated by quark/squark loops, dominantly of the third generation, where the mixing of left- and right-handed states can become large. Taking into account realistic beam polarization effects, photon and Z0Z^0-boson exchange, and current mass exclusion limits, we scan the MSSM parameter space for various e+ee^+e^- center-of-mass energies to determine the regions, where gluino production should be visible.Comment: 22 pages, 9 figure

    The ATLAS discovery potential for MSSM neutral Higgs bosons decaying to a mu+mu- pair in the mass range up to 130 GeV

    Get PDF
    Results are presented on the discovery potential for MSSM neutral Higgs bosons in the Mh-{max}scenario. The region of large tan beta, between 15 and 50, and mass between ~ 95 and 130 GeV is considered in the framework of the ATLAS experiment at the Large Hadron Collider (LHC), for a centre-of-mass energy = 14 TeV. This parameter region is not fully covered by the present data either from LEP or from Tevatron. The h/A bosons, supposed to be very close in mass in that region, are studied in the channel h/A -> mu+mu- accompanied by two b-jets. The study includes a method to control the most copious background, Zo -> mu+mu- accompanied by two b-jets. A possible contribution of the H boson to the signal is also considered

    Z decays into light gluinos: a calculation based on unitarity

    Full text link
    The Z boson can decay to a pair of light gluinos through loop-mediated processes. Based on unitarity of the S-matrix, the imaginary part of the decay amplitude is computed in the presence of a light bottom squark. This imaginary part can provide useful information on the full amplitude. Implications are discussed for a recently proposed light gluino and light bottom squark scenario.Comment: 19 pages, LaTeX, 3 figures, submitted to Phys. Rev.

    Quantifying the healthcare costs of treating severely bleeding major trauma patients: a national study for England.

    Get PDF
    INTRODUCTION: Severely bleeding trauma patients are a small proportion of the major trauma population but account for 40% of all trauma deaths. Healthcare resource use and costs are likely to be substantial but have not been fully quantified. Knowledge of costs is essential for developing targeted cost reduction strategies, informing health policy, and ensuring the cost-effectiveness of interventions. METHODS: In collaboration with the Trauma Audit Research Network (TARN) detailed patient-level data on in-hospital resource use, extended care at hospital discharge, and readmissions up to 12 months post-injury were collected on 441 consecutive adult major trauma patients with severe bleeding presenting at 22 hospitals (21 in England and one in Wales). Resource use data were costed using national unit costs and mean costs estimated for the cohort and for clinically relevant subgroups. Using nationally available data on trauma presentations in England, patient-level cost estimates were up-scaled to a national level. RESULTS: The mean (95% confidence interval) total cost of initial hospital inpatient care was £19,770 (£18,177 to £21,364) per patient, of which 62% was attributable to ventilation, intensive care, and ward stays, 16% to surgery, and 12% to blood component transfusion. Nursing home and rehabilitation unit care and re-admissions to hospital increased the cost to £20,591 (£18,924 to £22,257). Costs were significantly higher for more severely injured trauma patients (Injury Severity Score ≥15) and those with blunt injuries. Cost estimates for England were £148,300,000, with over a third of this cost attributable to patients aged 65 years and over. CONCLUSIONS: Severely bleeding major trauma patients are a high cost subgroup of all major trauma patients, and the cost burden is projected to rise further as a consequence of an aging population and as evidence continues to emerge on the benefits of early and simultaneous administration of blood products in pre-specified ratios. The findings from this study provide a previously unreported baseline from which the potential impact of changes to service provision and/or treatment practice can begin to be evaluated. Further studies are still required to determine the full costs of post-discharge care requirements, which are also likely to be substantial

    SUSY-QCD Effect on Top-Charm Associated Production at Linear Collider

    Get PDF
    We evaluate the contribution of SUSY-QCD to top-charm associated production at next generation linear colliders. Our results show that the production cross section of the process e+etcˉortˉce^+e^-\to t\bar c{or}\bar t c could be as large as 0.1 fb, which is larger than the prediction of the SM by a factor of 10810^8.Comment: version to appear in PR

    Higgs-Boson Production Associated with a Single Bottom Quark in Supersymmetric QCD

    Full text link
    Due to the enhancement of the couplings between Higgs boson and bottom quarks in the minimal sypersymmetric standard model (MSSM), the cross section of the process pp(p\bar{p}) \to h^0b(h^0\bar{b})+X at hadron colliders can be considerably enhanced. We investigated the production of Higgs boson associated with a single high-p_T bottom quark via subprocess bg(\bar{b}g) \to h^0b(h^0\bar{b}) at hadron colliders including the next-to-leading order (NLO) QCD corrections in MSSM. We find that the NLO QCD correction in the MSSM reaches 50%-70% at the LHC and 60%-85% at the Fermilab Tevatron in our chosen parameter space.Comment: accepted by Phys. Rev.

    Constraints on Baryon-Nonconserving Yukawa Couplings in a Supersymmetric Theory

    Get PDF
    The 1-loop evolution of couplings in the minimal supersymmetric standard model, extended to include baryon nonconserving (B ⁣ ⁣ ⁣/)(B\!\!\!/) operators through explicit RR-parity violation, is considered keeping only B ⁣ ⁣ ⁣/B\!\!\!/ superpotential terms involving the maximum possible number of third generation superfields. If all retained Yukawa couplings YiY_i are required to remain in the perturbative domain (Yi<1)(Y_i < 1) upto the scale of gauge group unification, upper bounds ensue on the magnitudes of the B ⁣ ⁣ ⁣/B\!\!\!/ coupling strengths at the supersymmetry breaking scale, independent of the model of unification. They turn out to be similar to the corresponding fixed point values reached from a wide range of YiY_i (including all YiY_i greater than unity) at the unification scale. The coupled evolution of the top and B ⁣ ⁣ ⁣/B\!\!\!/ Yukawa couplings results in a reduction of the fixed point value of the former.Comment: PRL-TH-94/8 and TIFR/TH/94-7, 15 pages, LaTe

    Higgs-boson production associated with a bottom quark at hadron colliders with SUSY-QCD corrections

    Full text link
    The Higgs boson production p p (p\bar p) -> b h +X via b g -> b h at the LHC, which may be an important channel for testing the bottom quark Yukawa coupling, is subject to large supersymmetric quantum corrections. In this work the one-loop SUSY-QCD corrections to this process are evaluated and are found to be quite sizable in some parameter space. We also study the behavior of the corrections in the limit of heavy SUSY masses and find the remnant effects of SUSY-QCD. These remnant effects, which are left over in the Higgs sector by the heavy sparticles, are found to be so sizable (for a light CP-odd Higgs and large \tan\beta) that they might be observable in the future LHC experiment. The exploration of such remnant effects is important for probing SUSY, especially in case that the sparticles are too heavy (above TeV) to be directly discovered at the LHC.Comment: Results for the Tevatron adde

    Pseudoscalar Higgs boson production associated with a single bottom quark at hadron colliders

    Full text link
    We compute the complete next-to-leading order (NLO) SUSY-QCD corrections for the associated production of a pseudoscalar Higgs boson with a bottom quark via bottom-gluon fusion at the CERN Large Hadron Collider (LHC) and the Fermilab Tevatron. We find that the NLO QCD correction in the MSSM reaches 4040%\sim50% at the LHC and 4545%\sim80% at the Tevatron in our chosen parameter space
    corecore