35 research outputs found

    Associations Between Prediagnostic Concentrations of Circulating Sex Steroid Hormones and Liver Cancer Among Postmenopausal Women

    Get PDF
    Background and Aims: In almost all countries, incidence rates of liver cancer (LC) are 100%-200% higher in males than in females. However, this difference is predominantly driven by hepatocellular carcinoma (HCC), which accounts for 75% of LC cases. Intrahepatic cholangiocarcinoma (ICC) accounts for 12% of cases and has rates only 30% higher in males. Hormones are hypothesized to underlie observed sex differences. We investigated whether prediagnostic circulating hormone and sex hormone binding globulin (SHBG) levels were associated with LC risk, overall and by histology, by leveraging resources from five prospective cohorts. Approach and Results: Seven sex steroid hormones and SHBG were quantitated using gas chromatography/tandem mass spectrometry and competitive electrochemiluminescence immunoassay, respectively, from baseline serum/plasma samples of 191 postmenopausal female LC cases (HCC, n = 83; ICC, n = 56) and 426 controls, matched on sex, cohort, age, race/ethnicity, and blood collection date. Odds ratios (ORs) and 95% confidence intervals (CIs) for associations between a one-unit increase in log2 hormone value (approximate doubling of circulating concentration) and LC were calculated using multivariable-adjusted conditional logistic regression. A doubling in the concentration of 4-androstenedione (4-dione) was associated with a 50% decreased LC risk (OR = 0.50; 95% CI = 0.30-0.82), whereas SHBG was associated with a 31% increased risk (OR = 1.31; 95% CI = 1.05-1.63). Examining histology, a doubling of estradiol was associated with a 40% increased risk of ICC (OR = 1.40; 95% CI = 1.05-1.89), but not HCC (OR = 1.12; 95% CI = 0.81-1.54). Conclusions: This study provides evidence that higher levels of 4-dione may be associated with lower, and SHBG with higher, LC risk in women. However, this study does not support the hypothesis that higher estrogen levels decrease LC risk. Indeed, estradiol may be associated with an increased ICC risk

    Detectable clonal mosaicism and its relationship to aging and cancer

    Get PDF
    In an analysis of 31,717 cancer cases and 26,136 cancer-free controls from 13 genome-wide association studies, we observed large chromosomal abnormalities in a subset of clones in DNA obtained from blood or buccal samples. We observed mosaic abnormalities, either aneuploidy or copy-neutral loss of heterozygosity, of >2 Mb in size in autosomes of 517 individuals (0.89%), with abnormal cell proportions of between 7% and 95%. In cancer-free individuals, frequency increased with age, from 0.23% under 50 years to 1.91% between 75 and 79 years (P = 4.8 × 10(-8)). Mosaic abnormalities were more frequent in individuals with solid tumors (0.97% versus 0.74% in cancer-free individuals; odds ratio (OR) = 1.25; P = 0.016), with stronger association with cases who had DNA collected before diagnosis or treatment (OR = 1.45; P = 0.0005). Detectable mosaicism was also more common in individuals for whom DNA was collected at least 1 year before diagnosis with leukemia compared to cancer-free individuals (OR = 35.4; P = 3.8 × 10(-11)). These findings underscore the time-dependent nature of somatic events in the etiology of cancer and potentially other late-onset diseases

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Body weight in early and mid-adulthood in relation to subsequent coronary heart disease mortality: 80-year follow-up in the Harvard Alumni Study

    No full text
    In the very few studies conducted,obesity in young adults is generally associated with an increased risk of future coronary heart disease (CHD). However, data interpretation is complicated by methodological limitations, which include small study size; a paucity of studies examining the impact of confounding factors; and unexplored mechanisms, including the essentially unknown contributions of early vs later body weight on CHD risk,5-6 which has implications for weight control interventions. In the largest and best characterized study to date, to our knowledge, we directly address these shortcoming
    corecore