438 research outputs found

    The influence of ionic strength on the adhesive bond stiffness of oral streptococci possessing different surface appendages as probed using AFM and QCM-D

    Get PDF
    Bacterial adhesion to surfaces poses threats to human-health, not always associated with adhering organisms, but often with their detachment causing contamination elsewhere. Bacterial adhesion mechanisms may not be valid for their detachment, known to proceed according to a visco-elastic mechanism. Here we aimed to investigate influences of ionic strength on the adhesive bond stiffness of two spherically shaped Streptococcus salivarius strains with different lengths of fibrillar surface appendages. The response of a Quartz-Crystal-Microbalance-with-Dissipation (QCM-D) upon streptococcal adhesion and changes in the ionic strength of the surrounding fluid indicated that the bond stiffness of S. salivarius HB7, possessing a dense layer of 91 nm long fibrils, was unaffected by ionic strength. Atomic-force-microscopic (AFM) imaging in PeakForce-QNM mode showed a small decrease in bond stiffness from 1200 to 880 kPa upon decreasing ionic strength from 57 to 5.7 mM, while Total-Internal-Reflection-Microscopy suggested a complete collapse of fibrils. S. salivarius HBV51, possessing a less dense layer of shorter (63 nm) fibrils, demonstrated a strong decrease in bond stiffness both from QCM-D and AFM upon decreasing the ionic strength, and a partial collapse of fibrils. Probably, the more hydrophobic and less negatively charged long fibrils on S. salivarius HB7 collapse side-on to the cell surface, while the more hydrophilic and negatively charged fibrils of S. salivarius HBV51 remain partially stretched. In summary, we demonstrate how a combination of different methods can yield a description of the structural changes occurring in the interfacial region between adhering, fibrillated streptococci and a substratum surface upon changing the ionic strengt

    Regular black hole in three dimensions

    Full text link
    We find a new black hole in three dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare thermodynamics of this black hole with that of non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy.Comment: 15 pages, 16 figures, 3D noncommutative black hole included as Sec 4, a version to appear in EPJ

    BKB\to K Transition Form Factor up to O(1/mb2){\cal O}(1/m^2_b) within the kTk_T Factorization Approach

    Full text link
    In the paper, we apply the kTk_T factorization approach to deal with the BKB\to K transition form factor F+,0BK(q2)F^{B\to K}_{+,0}(q^2) in the large recoil regions. The B-meson wave functions ΨB\Psi_B and ΨˉB\bar\Psi_B that include the three-particle Fock states' contributions are adopted to give a consistent PQCD analysis of the form factor up to O(1/mb2){\cal O} (1/m^2_b). It has been found that both the wave functions ΨB\Psi_B and ΨˉB\bar\Psi_B can give sizable contributions to the form factor and should be kept for a better understanding of the BB meson decays. Then the contributions from different twist structures of the kaon wavefunction are discussed, including the SUf(3)SU_f(3)-breaking effects. A sizable contribution from the twist-3 wave function Ψp\Psi_p is found, whose model dependence is discussed by taking two group of parameters that are determined by different distribution amplitude moments obtained in the literature. It is also shown that F+,0BK(0)=0.30±0.04F^{B\to K}_{+,0}(0)=0.30\pm0.04 and [F+,0BK(0)/F+,0Bπ(0)]=1.13±0.02[F^{B\to K}_{+,0}(0)/F^{B\to \pi}_{+,0}(0)]=1.13\pm0.02, which are more reasonable and consistent with the light-cone sum rule results in the large recoil regions.Comment: 22 pages and 6 figure

    Slowly rotating black holes in the Horava-Lifshitz gravity

    Full text link
    We investigate slowly rotating black holes in the Ho\v{r}ava-Lifshitz (HL) gravity. For ΛW=0\Lambda_W=0 and λ=1\lambda=1, we find a slowly rotating black hole of the Kehagias-Sfetsos solution in asymptotically flat spacetimes. We discuss their thermodynamic properties by computing mass, temperature, angular momentum, and angular velocity on the horizon.Comment: 12 pages, no figures, version to appear in EPJ

    Solving Hierarchical Constraints over Finite Domains with Local Search

    Get PDF
    National Science and Technology Board (Singapore

    A single amino-acid substitution in the sodium transporter HKT1 associated with plant salt tolerance

    Get PDF
    A crucial prerequisite for plant growth and survival is the maintenance of potassium uptake, especially when high sodium surrounds the root zone. The Arabidopsis HIGH-AFFINITY K TRANSPORTER1 (HKT1), and its homologs in other salt-sensitive dicots, contributes to salinity tolerance by removing Na from the transpiration stream. However, TsHKT1;2, one of three HKT1 copies in Thellungiella salsuginea, a halophytic Arabidopsis relative, acts as a Ktransporter in the presence of Na in yeast (Saccharomyces cerevisiae). Amino-acid sequence comparisons indicated differences between TsHKT1;2 and most other published HKT1 sequences with respect to an Asp residue (D207) in the second pore-loop domain. Two additional T. salsuginea and most other HKT1 sequences contain Asn (N) in this position. Wild-type TsHKT1;2 and altered AtHKT1 (AtHKT1) complemented K-uptake deficiency of yeast cells. Mutanthkt1-1 plants complemented with both AtHKT1 and TsHKT1;2 showed higher tolerance to salt stress than lines complemented by the wild-type AtHKT1. Electrophysiological analysis in Xenopus laevis oocytes confirmed the functional properties of these transporters and the differential selectivity for Na and Kbased on the N/D variance in the pore region. This change also dictated inward-rectification for Na transport. Thus, the introduction of Asp, replacing Asn, in HKT1-type transporters established altered cation selectivity and uptake dynamics. We describe one way, based on a single change in a crucial protein that enabled some crucifer species to acquire improved salt tolerance, which over evolutionary time may have resulted in further changes that ultimately facilitated colonization of saline habitats.Peer Reviewe

    The “Narratives” fMRI dataset for evaluating models of naturalistic language comprehension

    Get PDF
    The “Narratives” collection aggregates a variety of functional MRI datasets collected while human subjects listened to naturalistic spoken stories. The current release includes 345 subjects, 891 functional scans, and 27 diverse stories of varying duration totaling ~4.6 hours of unique stimuli (~43,000 words). This data collection is well-suited for naturalistic neuroimaging analysis, and is intended to serve as a benchmark for models of language and narrative comprehension. We provide standardized MRI data accompanied by rich metadata, preprocessed versions of the data ready for immediate use, and the spoken story stimuli with time-stamped phoneme- and word-level transcripts. All code and data are publicly available with full provenance in keeping with current best practices in transparent and reproducible neuroimaging

    Modeling the Subsurface Structure of Sunspots

    Get PDF
    While sunspots are easily observed at the solar surface, determining their subsurface structure is not trivial. There are two main hypotheses for the subsurface structure of sunspots: the monolithic model and the cluster model. Local helioseismology is the only means by which we can investigate subphotospheric structure. However, as current linear inversion techniques do not yet allow helioseismology to probe the internal structure with sufficient confidence to distinguish between the monolith and cluster models, the development of physically realistic sunspot models are a priority for helioseismologists. This is because they are not only important indicators of the variety of physical effects that may influence helioseismic inferences in active regions, but they also enable detailed assessments of the validity of helioseismic interpretations through numerical forward modeling. In this paper, we provide a critical review of the existing sunspot models and an overview of numerical methods employed to model wave propagation through model sunspots. We then carry out an helioseismic analysis of the sunspot in Active Region 9787 and address the serious inconsistencies uncovered by \citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find that this sunspot is most probably associated with a shallow, positive wave-speed perturbation (unlike the traditional two-layer model) and that travel-time measurements are consistent with a horizontal outflow in the surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic
    corecore