66 research outputs found

    Spontaneous Formation of Gold Nanoparticles on Graphene by Galvanic Reaction through Graphene

    Get PDF
    We demonstrate an effective and facile method for the deposition of gold nanoparticles (AuNPs) on graphene by using spontaneous galvanic reaction. Despite the interest and importance of the hybrid structure of noble metal-deposited graphene has been considerably increased for its fundamental knowledge in chemical and physical sciences and for its various applications, the progress of this subject is very slow mainly because of the lack of synthetic methods for such structures, especially that are not free from chemical contamination and usage of complex and expensive equipment. Therefore, we developed a new method allowing chemically pure AuNPs/graphene hybrid structures employing galvanic reaction. The spontaneous galvanic reaction was derived from reductant/graphene/oxidant sandwich structures, such as Au ions/graphene/Ge wafer and Au ions/graphene/copper foil, by placing Au ion solution droplets on graphene transferred on a germanium wafer or as made graphene on Cu foil, respectively. According to scanning electron microscopy and atomic force microscopy results, it was confirmed that AuNPs were successfully formed on the graphene surface. This result implies two important points. One is that the formation of pure AuNPs on graphene is possible without using other chemicals frequently required for conventional NP preparation. The other one is that it was experimentally demonstrated that there are electronic communications between the oxidant and reductant that are separated by graphene, through which electrons can pass freely.11Ysciescopu

    The mechanism of striation formation in plasma display panels

    Get PDF
    Despite the high pressure employed in plasma display panels, the energy balance of low-energy electrons is found to be dominated by inelastic collisions, and the resulting nonlocal electron kinetics plays a key role in the striation formation. Surface charge accumulation on the anode dielectric, however, is also needed for striations to form. It is the combined effect of surface charges and nonlocal electron kinetics that results in the striation formation in plasma display panel cells. Two-dimensional fluid simulations, which assume local electron kinetics, and two-dimensional particle-in-cell Monte Carlo collision simulations with a bare conducting anode show that striations do not form if either the nonlocal electron kinetics or the surface charge accumulation is not considered

    Highly reproducible alkali metal doping system for organic crystals through enhanced diffusion of alkali metal by secondary thermal activation

    Get PDF
    In this paper, we report an efficient alkali metal doping system for organic single crystals. Our system employs an enhanced diffusion method for the introduction of alkali metal into organic single crystals by controlling the sample temperature to induce secondary thermal activation. Using this system, we achieved intercalation of potassium into picene single crystals with closed packed crystal structures. Using optical microscopy and Raman spectroscopy, we confirmed that the resulting samples were uniformly doped and became K2picene single crystal, while only parts of the crystal are doped and transformed into K2picene without secondary thermal activation. Moreover, using a customized electrical measurement system, the insulator-to-semiconductor transition of picene single crystals upon doping was confirmed by in situ electrical conductivity and ex situ temperature-dependent resistivity measurements. X-ray diffraction studies showed that potassium atoms were intercalated between molecular layers of picene, and doped samples did not show any KH- nor KOH-related peaks, indicating that picene molecules are retained without structural decomposition. During recent decades, tremendous efforts have been exerted to develop high-performance organic semiconductors and superconductors, whereas as little attention has been devoted to doped organic crystals. Our method will enable efficient alkali metal doping of organic crystals and will be a resource for future systematic studies on the electrical property changes of these organic crystals upon doping. © 2018 The Author(s

    Conductance oscillations of a spin-orbit stripe with polarized contacts

    Get PDF
    We investigate the linear conductance of a stripe of spin-orbit interaction in a 2D electron gas; that is, a 2D region of length \ell along the transport direction and infinite in the transverse one in which a spin-orbit interaction of Rashba type is present. Polarization in the contacts is described by means of Zeeman fields. Our model predicts two types of conductance oscillations: Ramsauer oscillations in the minority spin transmission, when both spins can propagate, and Fano oscillations when only one spin propagates. The latter are due to the spin-orbit coupling with quasibound states of the non propagating spin. In the case of polarized contacts in antiparallel configuration Fano-like oscillations of the conductance are still made possible by the spin orbit coupling, even though no spin component is bound by the contacts. To describe these behaviors we propose a simplified model based on an ansatz wave function. In general, we find that the contribution for vanishing transverse momentum dominates and defines the conductance oscillations. Regarding the oscillations with Rashba coupling intensity, our model confirms the spin transistor behavior, but only for high degrees of polarization. Including a position dependent effective mass yields additional oscillations due to the mass jumps at the interfaces.Comment: 8.5 pages, 9 figure

    High Yield Organic Superconductors via Solution-Phase Alkali Metal Doping at Room Temperature

    No full text
    Alkali metal doping is an essential process for developing organic superconductors. The conventional vapor-phase alkali metal doping, however, frequently suffers from low efficiency and poor reproducibility mainly due to the inhomogeneous reaction between alkali metal vapor and target organic molecule powder. To overcome this issue, here we developed a facile and highly reproducible solution-phase alkali metal doping (SPD) and successfully applied it to prepare potassium-doped fullerene (K3C60) superconductors. Different from the conventional vapor-phase alkali metal doping, the SPD method resulted in almost perfect diamagnetism with an unprecedented high shielding fraction (similar to 99.5%) with high reproducibility (>80%). It works well with popular commercially available solvents, like ammonia solution in THF, methylamine solution in THF, and even pure THF at room temperature. We believe that our highly facile and efficient SPD approach will be a great help for the finding of next-generation organic superconductors, especially searching for high-T-c organic superconductors.11Nsciescopu

    Landscape architecture in Hong Kong

    No full text

    Influence of hydrogen surface passivation on Sn segregation, aggregation, and distribution in GeSn/Ge(001) materials

    No full text
    10.1063/1.4921594Journal of Applied Physics1172
    corecore