92 research outputs found

    An Evaluation of the Fe-N Phase Diagram Considering Long-Range Order of N Atoms in γ'-Fe4N1-x and ε-Fe2N1-z

    Get PDF
    The chemical potential of nitrogen was described as a function of nitrogen content for the Fe-N phases α-Fe[N], γ'-Fe4N1-x, and ε-Fe2N1-z. For α-Fe[N], an ideal, random distribution of the nitrogen atoms over the octahedral interstices of the bcc iron lattice was assumed; for γ'-Fe4N1-x and ε-Fe2N1-z, the occurrence of a long-range ordered distribution of the nitrogen atoms over the octahedral interstices of the close packed iron sublattices (fcc and hcp, respectively) was taken into account. The theoretical expressions were fitted to nitrogen-absorption isotherm data for the three Fe-N phases. The α/α + γ', α + γ'/γ', γ'/γ' + ε, and γ' + ε/ε phase boundaries in the Fe-N phase diagram were calculated from combining the quantitative descriptions for the absorption isotherms with the known composition of NH3/H2 gas mixtures in equilibrium with coexisting α and γ' phases and in equilibrium with coexisting γ' and ε phases. Comparison of the present phase boundaries with experimental data and previously calculated phase boundaries showed a major improvement as compared to the previously calculated Fe-N phase diagrams, where long-range order for the nitrogen atoms in the γ' and ε phases was not accounted for

    On the nitrogen-induced lattice expansion of a non-stainless austenitic steel, Invar 36®, under triode plasma nitriding

    Get PDF
    Chromium, as a strong nitride-forming element, is widely regarded to be an “essential” ingredient for the formation of a nitrogen-expanded lattice in thermochemical nitrogen diffusion treatments of austenitic (stainless) steels. In this article, a proprietary “chrome-free” austenitic iron-nickel alloy, Invar® 36 (Fe-36Ni, in wt pct), is characterized after triode plasma nitriding (TPN) treatments at 400 °C to 450 °C and compared with a “stainless” austenitic counterpart RA 330® (Fe-19Cr-35Ni, in wt pct) treated under equivalent nitriding conditions. Cr does indeed appear to play a pivotal role in colossal nitrogen supersaturation (and hence anisotropic lattice expansion and superior surface hardening) of austenitic steel under low-temperature (≤ 450 °C) nitrogen diffusion. Nevertheless, this work reveals that nitrogen-induced lattice expansion occurs below the nitride-containing surface layer in Invar 36 alloy after TPN treatment, implying that Cr is not a necessity for the nitrogen-interstitial induced lattice expansion phenomenon to occur, also suggesting another type of γN

    Al-O

    No full text

    Al-N

    No full text

    Al-Fe-O (Aluminum-Iron-Oxygen)

    No full text

    Ag-Fe (Silver - Iron)

    No full text

    The N-Ti-V system (nitrogen-titanium-vanadium)

    No full text
    corecore