10 research outputs found

    Quantum fields in disequilibrium: neutral scalar bosons with long-range, inhomogeneous perturbations

    Get PDF
    Using Schwinger's quantum action principle, dispersion relations are obtained for neutral scalar mesons interacting with bi-local sources. These relations are used as the basis of a method for representing the effect of interactions in the Gaussian approximation to field theory, and it is argued that a marked inhomogeneity, in space-time dependence of the sources, forces a discrete spectrum on the field. The development of such a system is characterized by features commonly associated with chaos and self-organization (localization by domain or cell formation). The Green functions play the role of an iterative map in phase space. Stable systems reside at the fixed points of the map. The present work can be applied to self-interacting theories by choosing suitable properties for the sources. Rapid transport leads to a second order phase transition and anomalous dispersion. Finally, it is shown that there is a compact representation of the non-equilibrium dynamics in terms of generalized chemical potentials, or equivalently as a pseudo-gauge theory, with an imaginary charge. This analogy shows, more clearly, how dissipation and entropy production are related to the source picture and transform a flip-flop like behaviour between two reservoirs into the Landau problem in a constant `magnetic field'. A summary of conventions and formalism is provided as a basis for future work.Comment: 23 pages revte

    Dynamics of Two Higgs Doublet CP Violation and Baryogenesis at the Electroweak Phase Transition

    Get PDF
    We quantitatively study the charge transport mechanism of electroweak baryogenesis in a realistic two-Higgs-doublet model, comparing the contributions from quarks and leptons reflecting from electroweak domain walls, and comparing the exact profile of the CP-violating phase with a commonly used ansatz. We note that the phenomenon of spontaneous CP violation at high temperature can occur in this model, even when there is no CP violation at zero temperature. We include all known effects which are likely to influence the baryon production rate, including strong sphalerons, the nontrivial dispersion relations of the quasiparticles in the plasma, and Debye screening of gauged charges. We confirm the claim of Joyce, Prokopec and Turok that the reflection of tau leptons from the wall gives the dominant effect. We conclude that this mechanism is marginally strong enough to produce the observed baryon asymmetry of the universe.Comment: 49 pp. latex, 6 figures; section on diffusion expanded and corrected, published versio

    Baryon Asymmetry of the Universe in the Standard Model

    Full text link
    We study the interactions of quarks and antiquarks with the changing Higgs field during the electroweak phase transition, including quantum mechanical and some thermal effects, with the only source of CP violation being the known CKM phase. The magnitude and sign of the predicted BAU agrees with the observed value, with moderately optimistic assumptions about the dynamics of the phase transition. At present uncertainties related to the dynamics of the ew phase transition and the oversimplifications of our treatment are too great to decide whether or not this is the correct explanation for the presence of remnant matter in our universe, however the present work makes it clear that the minimal standard model cannot be discounted as a contender for explaining this phenomenon.Comment: 121pp plus 14 figures, CERN-TH.6734/93 and RU-93-11. latex. This is an extended version of the preprint originally issued in May, 1993. It corrects some typographical errors and has been somewhat reorganized (e.g., moving more to the appendices) and elaborated (especially the section on analytic results) in order to make it more readily understandable. In addition we include two effects which were previously neglected: L−RL-R mixing due to QCD sphalerons, and a diminution of the electroweak gauge and Higgs effects in the broken phase due to mass corrections in the 1-loop approximation to th
    corecore