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Abstract

We quantitatively study the charge transport mechanism of electroweak baryogenesis in a

realistic two-Higgs-doublet model, comparing the contributions from quarks and leptons re-

flecting from electroweak domain walls, and comparing the exact profile of the CP-violating

phase with a commonly used ansatz. We note that the phenomenon of spontaneous CP

violation at high temperature can occur in this model, even when there is no CP violation

at zero temperature. We include all known effects which are likely to influence the baryon

production rate, including strong sphalerons, the nontrivial dispersion relations of the quasi-

particles in the plasma, and Debye screening of gauged charges. We confirm the claim of

Joyce, Prokopec and Turok that the reflection of tau leptons from the wall gives the domi-

nant effect. We conclude that this mechanism is at best marginally capable of producing the

observed baryon asymmetry of the universe, and we discuss some ways in which it might be

enhanced.
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1 Introduction

An exciting proposal during the last few years is that the baryon asymmetry of the universe

was created during the electroweak phase transition [1], by harnessing both the anomalous

baryon number violation present within the standard model, and the first order nature of

the phase transition which gives the necessary departure from thermal equilibrium. The

third ingredient needed for baryogenesis is CP violation, which is widely believed to be too

small for this purpose in the standard model. However in modest extensions of the standard

model it is possible to introduce new sources of CP violation which are more effective for

baryogenesis [2] - [5]. For example in generic models with more than one Higgs doublet,

phases can be introduced into the potential for the scalars which are only weakly constrained

by laboratory limits on CP violation [6].

The simplest example is a theory with two Higgs doublets, where there is a single phase

θ, namely the phase mismatch between the VEV’s of the two scalar fields [2]. Although at

zero temperature θ is just another parameter of the theory, during the electroweak phase

transition it is a spatially varying field θ(x) whose value depends on the position relative

to the domain walls that separate the true and false vacuum phases during the transition.

In principle, the detailed form of θ(x) is needed for computing the difference in reflection

probabilities between quarks and antiquarks bouncing off the domain walls, which is how a

baryon asymmetry is produced in the charge transport mechanism of electroweak baryoge-

nesis [7, 8]. Until now there have been no attempts to compute θ(x); rather an ansatz has

been invoked. We will show that the difference between the actual solutions and the ansatz

can be quite significant. Moreover, a detailed study of the equation of motion for θ(x) reveals

the interesting phenomenon of spontaneous CP violation [9] at high temperature that can

occur in this model, even when there is no CP violation at zero temperature.

We subsequently use our solution for θ(x) to study the baryon production in the charge

transport mechanism. We account for all known effects which are likely to influence the

baryon production rate including the nontrivial dispersion relations of the quasiparticles in

the plasma, strong sphalerons and Debye screening of gauged charges. We do not include

thermal damping in our calculation of reflection amplitudes, but we will argue that this

phenomenon is likely to be of little consequence to our results. We confirm the claim of Joyce,

Prokopec and Turok [8] that the reflection of tau leptons from the wall gives the dominant
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effect; however we differ from ref. [8] in that our exact computation of the probabilities for

particles to reflect from the bubble wall gives smaller results than their estimates. Based

on our results, it appears difficult to get a large enough baryon asymmetry even using the

most favorable values of large CP violation and slow bubble wall velocity. However some

modifications, such as a larger tau lepton Yukawa coupling or further slowing of the bubble

walls toward the end of the phase transition, may make it possible to account for the baryon

asymmetry with this mechanism.

In section 2 we introduce a two-Higgs-doublet model which is sufficiently realistic to

include the physics needed for electroweak baryogenesis, and we find its corresponding finite-

temperature potential. Section 3 discusses the solution for the θ field equation of motion,

and in section 4 the computation of the fermion reflection coefficients is explained. Section

5 treats the complicated process of how the fermions reflected from the wall will propagate

back into the symmetric phase before the wall overtakes them again. In section 6 we put

these results together to find the baryon asymmetry. We present our results and conclusions

in section 7.

2 The Model and its Effective Potential

In the most general potential with two Higgs doublets, flavor-changing neutral currents

(FCNC’s) are unsuppressed; it is therefore convenient to impose a global symmetry such as

Φ1 → −Φ1 to forbid them [10]. This symmetry, if exact, would also forbid CP-violation

and lead to domain wall formation in the early universe, but these problems can be cured

without reintroducing the first by allowing the symmetry to be softly broken by a term Φ†
1Φ2

[2, 11]. The potential is

V (Φ1,Φ2) = −µ2
1Φ

†
1Φ1 − µ2

2Φ
†
2Φ2 + κ̃Φ†

1Φ2 + κ̃∗Φ†
2Φ1 +

λ1

2
(Φ†

1Φ1)
2 +

λ2

2
(Φ†

2Φ2)
2

+h1(Φ
†
1Φ2)(Φ

†
2Φ1) + h2(Φ

†
1Φ1)(Φ

†
2Φ2) + h3

(
(Φ†

1Φ2)
2 + (Φ†

2Φ1)
2)
)

+y2F LΦ2fR + c.c. (1)

The last term is the Yukawa interaction of the Higgs field with a generic fermion field, taking

into account that the coupling y1 to Φ1 is forbidden by the global symmetry.
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In the above expression we have used global field redefinitions to make the coupling h3

real. In general the mass term κ̃ thus remains complex. If h3 should happen to be zero, as is

the case at tree level in the supersymmetric (SUSY) standard model, the same redefinition

could be used to make κ̃ real and then there would be no CP-violation in the Higgs sector.

However even in the SUSY case a complex value of h3 is generated at one loop [7]. We will

write κ̃ as a modulus times a phase,

κ̃ = κeiδκ . (2)

Finite-temperature corrections to the effective potential at the one-loop level are given

by the integral [12]

∆VT (φ) = ∓ T 4

2π2

∫ ∞

0
dxx2 Tr ln

(
1 ± exp[−

√
x2 + (M(φ)/T )2 ]

)
, (3)

where the trace is over all particles in the theory and +(−) is for fermions (bosons). Each

real field (four for a Dirac fermion) counts as a single state in the sum. The masses are

evaluated at arbitrary background values of the scalar fields. Expanding ∆VT (φ) to fourth

order in the masses, the result can be written as

∆VT (φ) ∼=
∑

i

{
Ci
m2

iT
2

48
−Di

m3
iT

12π
−Ei

m4
i

64π2
(ln(m2

i /T
2) − Fi)

}
(4)

where Ci = 2(1), Di = 1(0), Ei = 1(−1) and Fi
∼= 5.41(2.64) for bosons (fermions). For

example, the quadratic term has the effect of shifting the parameters µ2
i of the tree-level

Lagrangian to

µ2
i (T ) = µ2

i − aiT
2 (5)

where in terms of the SU(2) and U(1) gauge couplings and the Yukawa couplings,

ai =
1

12
(3λi + h1 + 2h2) +

1

16

(
3g2 + g′2

)
+

1

4
y2

i . (6)

(Note that y1 = 0 for our model). The ring-improvement of the potential is the first iteration

of eq. (3), in which the masses M of the bosons are taken to be those at tree-level plus the

one-loop temperature-corrected ones [13].

The effective potential derived here differs from that of Turok and Zadrozny [2] who

considered the same model without the κ term. Their computation was made in the unitary
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gauge, which gives unreliable results, as has been shown in ref. [14]. One way to see that the

result of [2] is incorrect is the fact that their thermal corrections do not respect the symmetry

Φ1 ↔ Φ2 even though the underlying Lagrangian does. Ref. [14] shows that unitary gauge

is a poor choice near the critical temperature, where each order in the loop expansion is as

important as the next for obtaining quantities that are perturbatively calculable in covariant

gauges.

The phase transition in this model generically proceeds in two stages, because there are

separate critical temperatures for the two fields [15, 16]. To sidestep this complication we now

follow previous authors by making the simplifying technical assumption that λ1 = λ2 ≡ λ,

µ2
1 = µ2

2 ≡ µ2 [2, 17]. Then the Higgs potential is invariant under the exchange of the moduli

of the two fields, and we can parametrize the domain walls separating the true and false

vacua in the form

Φ1(x) =
1√
2

(
0

ρ(x)ei(α(x)+θ(x))/2

)
, Φ2(x) =

1√
2

(
0

ρ(x)ei(α(x)−θ(x))/2

)
. (7)

The CP-conserving phase α(x) is the neutral Goldstone boson which is eaten by the Z0

when the symmetry is broken. Its expectation value is a constant which can be ignored

in our subsequent discussion; therefore the phase transition is described by two real fields

instead of three. Moreover in a first approximation, the phase θ(x) can be treated as a small

perturbation, so that the domain wall profile during the phase transition is determined by a

single equation for ρ(x). We expect the physics of quark reflection from bubble walls in this

model to be similar to that of the more realistic case when µ2
1 6= µ2

2.

It is clear from the full potential that if, for small θ(x), we want the symmetry to break

in the direction of Φ1 = Φ2, then we must demand that

κ < 0. (8)

If not, the same physics would still ensue except that we would have to change the name of

one of the fields, say Φ1 → −Φ1; thus we will take (8) as our convention for the sign of κ.

Unfortunately the necessity of coupling the fermions to only one Higgs field means that

finite-temperature corrections will spoil the symmetry that would allow both fields to have

equal VEV’s as in (7). We will ignore this complication in order to maintain the single stage
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phase transition, yet still keep the effect of fermion contributions to the finite-temperature

effective potential, using the prescription that

µ2(T ) = µ2 − aT 2; a = (a1 + a2)/2. (9)

This should be regarded as a reasonable compromise between realism and simplicity. It

would be exact in the case where the fermions coupled with equal strength to both Higgs

doublets, which is another, less familiar way of avoiding flavor-changing neutral currents (for

further discussion of this point, see section 7). We will keep only the dominant top quark

Yukawa contribution y2 = 1.4 in a2. This value corresponds to a mass of 176 GeV [18].

The result of substituting the form (7) into the effective potential for the Higgs fields is

Veff(ρ, θ) = (−µ2 + aT 2 + κ cos(θ − δκ))ρ
2

−δTρ3 +
1

4
(λeff + 2h3(cos(2θ) − 1))ρ4 + · · ·

λeff = λ+ h1 + h2 + 2h3. (10)

The ellipsis represents contributions which have a smaller effect on the evolution of the fields

than those retained: temperature corrections to the quartic couplings, and cubic terms of

the form (ρ2 + cT 2)3/2. The cubic term retained in (10) is contributed by the transverse

gauge bosons whose thermal squared mass (the cT 2 term) vanishes at order g2. They give

δ = (2g3 + (g2 + g′2)3/2)/(12
√

2π) = 0.018. However this is an underestimate since the

(ρ2 + cT 2)3/2-like terms must still function in somewhat the same way as a pure cubic term,

and they are numerous because the two Higgs doublets contribute a total of eight particles

in the sum (4). These terms are inconvenient to include explicitly because they make it

impossible to compute the parameters of the phase transition analytically. Instead we will

parametrize their effect, as well as contributions from other possible particles such as singlet

Higgs fields [19] and possible nonperturbative effects [20], by keeping δ as an adjustable

parameter (for more discussion, see section 7). In any case, this is necessary for avoiding the

problem of baryon washout in the broken phase [17]. To see this, we note that the phase

transition occurs at the critical temperature

T 2
c = (µ2 − κ)/(a− δ2/λeff) (11)
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defined as the temperature when two degenerate minima develop in the Higgs potential. At

this time the VEV is

ρc = 2δTc/λeff . (12)

Residual sphaleron interactions in the broken phase can wash out the baryon asymmetry once

it has been created unless the condition ρc
>∼ Tc is satisfied, or in other words δ >∼ λeff/2.

(This can be derived from the condition that the sphaleron energy Esph be greater than

≈ 45Tc [3] using Esph = 8πB(λeff)MW (T )/g2, where B(λeff) ≃ 1.6 for small values of λeff .)

Unfortunately the value δ = 0.018 due to transverse gauge bosons would necessitate too small

a value of λeff to be compatible with the laboratory bound of m2
h0 = λeffρ

2
0 > (60 GeV)2.

Henceforth we will therefore take δ = λeff/2.

For future reference we give the VEV of the ρ field and the vacuum masses of the Higgs

fields here, in the limit of a small CP-violating phase. At zero temperature the potential is

minimized by

ρ0 = (2(µ2 − κ)/λeff)1/2 =
246√

2
GeV (13)

and if we define a parameter

ζ = −κ/m2
h0 ; κ =

µ2

1 − (2ζ)−1
, (14)

the masses can be written as

m2
h0 = λeffρ

2
0

m2
A0 = −4h3ρ

2
0 − 2|κ| = m2

h0(2ζ − 4h3/λeff)

m2
H0 = (λeff − 2h1 − 2h2 − 4h3)ρ

2
0 − 2|κ|

= m2
h0(1 + 2ζ − (2h1 + 2h2 + 4h3)/λeff)

m2
H± = −(h1 + 2h3)ρ

2
0 − 2|κ|

= m2
h0(2ζ − (h1 + 2h3)/λeff). (15)

Note that h0 is the Higgs field which gets a VEV. To explore the implications of various

choices of the parameter κ, it will be helpful to invert the relations (15) to solve for the

quartic couplings as functions of ζ and the mass ratios

γi ≡ m2
i /m

2
h0, (16)
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with γh0 ≡ 1. The couplings can then be written as

ĥ1 ≡ h1/λeff = (2ζ − 2γ± + γA)/2;

ĥ2 ≡ h2/λeff = (1 − 2ζ + 2γ± − γH)/2;

ĥ3 ≡ h3/λeff = (2ζ − γA)/4. (17)

From these we can express the parameter a of eq. (9) in terms of the mass parameters,

a = λeff




1

6
− ζ

3
+

1

24

∑

h0,A,H
+,−

γi


+

3g2 + g′2

16
+
y2

8
(18)

which is useful for determining the critical temperature through eq. (11), and thereby the

width of the bubble wall to be discussed below.

Curiously, the combination a−δ2/λeff can vanish for sufficiently large negative values of κ

(large positive ζ), the mass which mixes the two Higgs fields in the tree-level potential. From

eq. (11) we see that this would imply a negative value for T 2
c , meaning that there would be

no phase transition. We should not trust our effective potential for these parameters, (and

even if we could, there would be no electroweak baryogenesis), so we will exclude this region.

Using the top quark Yukawa coupling y = 1.4, one can solve for the condition that there is

a phase transition,

ζ < 3c/λeff + 1/2 − 3(δ/λeff)2 +
∑

h0,A,H
+,−

γi/8

c =
3g2 + g′2

16
+

3y2

8
= 0.34 (19)

For the smallest experimentally allowed values of m2
h0 , λeff = 0.12 and assuming that δ =

λeff/2 and the mass ratios γi = 1 we get ζ < 8.8. This condition can be violated only if there

is a fine-tuned cancellation between µ2 and κ designed to keep the weak scale at 100 GeV.

For heavy Higgs boson masses the restriction on ζ becomes even less severe.

3 Bubble Wall Profiles

We now turn to the description of the domain wall at the phase transition. In principle the

equations of motion for the bubble wall nonlinearily couple all doublet field components.
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For technical reasons we will assume that the relative phase between the Higgs doublet is

small, and therefore we work only to the lowest order in θ(x); in this case the equations

for the modulus ρ decouples from that of θ. The equation for θ has nontrivial solutions

because of the explicit CP-violation present in the effective action in the form of a complex

κ. Moreover, we find that for a certain region of parameters CP gets spontaneously broken

in the symmetric phase, giving raise to nontrivial solutions even when the effective action

has no explicit CP-violation.

Since the bubbles of true vacuum grow to macroscopic proportions one can approximate

the walls as planar, depending only on a single coordinate z [21]. Combining the effective

potential (10) with the kinetic energy density

Ekin = (∂zρ)
2 +

1

4
(ρ∂zθ)

2, (20)

one finds that to zeroth order in θ, the equation of motion of the ρ field has the usual kink

solution

ρ(z) = ρcg(z);

g(z) =
1

2

(
1 + tanh(z/∆wall)

)
;

∆wall =
4ρ0

mh0ρc

. (21)

For example, with λeff = 0.12, γi = ζ = 1 and δ = λeff/2, one finds a rather wide wall with

∆wall ≃ 11.5/Tc ≃ 0.15 GeV−1. For the equation of motion for θ, we define a dimensionless

distance ẑ = z/∆wall along the bubble wall and obtain

∂2
ẑθ + 4(1 − g)∂ẑθ +B sin(θ − δκ) + Cg2(sin 2θ)/2 = 0;

B ≡ 2κ∆2
wall; C ≡ 4h3∆

2
wallρ

2
c = 64h3/λeff . (22)

The boundary conditions in the broken and unbroken symmetry phases (z ≫ 0 and z ≪ 0

respectively) depend on the values of the parameters B and C. By demanding that the

derivative of θ vanishes at ±∞ it is easy to see that the boundary conditions for the case

B + C < 0 are

θ(z) =

{
δκ, z = −∞
δκB/(B + C), z = +∞ (23)

8



to lowest order in δκ. However if B +C > 0, the boundary conditions are no longer propor-

tional to δκ. In particular in the case that δκ = 0, so that CP is explicitly conserved by the

Higgs potential, one finds the nontrivial boundary conditions (note that because B < 0 this

solution only exists when B + C > 0)

θ(z) =

{
0, z = −∞
cos−1(−B/C), z = +∞ . (24)

This is an example of spontaneous breaking of CP at finite temperature [9], where CP is

conserved at T = 0. It is interesting because in this case there will be no constraints from

laboratory searches for CP violation on the phase θ. It is straightforward to show that

spontaneous CP violation occurs only for sufficiently large values of ζ = −κ/m2
h0 ,

ζ >
√
F 2 + 3γA(δ/λeff)2 + F ;

F ≡ 1.5c/λeff + 1/4 − 9δ2/2λ2
eff +

∑

h0,A,H
+,−

γi/16. (25)

using the parameter c defined in (19) and the mass ratio γA = m2
A/m

2
h0. The constraints

(19) and (25) restrict the range of spontaneous CP violation to a rather narrow band in ζ .

For example with the particular choice of parameters shown in (34), one finds that it occurs

if 7.85 <∼ ζ <∼ 8.70. However, this is essentially the only constraint there is; one can verify

that the upper bound on ζ in (19) does not conflict with the lower bound (25) unless γA is

larger than the average ratio of the other Higgs masses by the amount

γA −
∑

i6=A,h0

γi/3 = 8c/λeff + 5/3 − 8(δ/λeff)2. (26)

Such a large discrepancy between the masses seems unlikely and would invalidate the use

of perturbation theory in the construction of the finite temperature effective potential. We

will always assume δκ = 0 when considering the spontaneous CP violation and focus on the

situation B + C ∼ 0, so that the boundary values of θ are small and we are justified in

treating it as a perturbation.

Since there is no unique choice for the sign of θ when CP is only spontaneously violated,

one would expect that half of all the bubbles that form during the transition produce baryon
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asymmetries of the opposite sign, which average to zero in the end. However it is conceiv-

able that a small amount of explicit CP violation could be dynamically amplified by the

spontaneous effect [23], avoiding the cancellation, so we will keep in mind the possibility.

Let us first however consider the case of explicit CP-violation with B +C < 0 and small

CP-violating angle δκ ≪ π. The linearized equation is

∂2
ẑθ + 4(1 − g)∂ẑθ + (B + Cg2)θ +D = 0;

D ≡ −δκB. (27)

Although one might try various techniques for numerically integrating (22), they require

specifying boundary conditions at finite values of z, where one does not know the exact

asymptotic behavior without first having solved the equations. We found that results for

the baryon asymmetry due to heavy top quarks were quite sensitive to small uncertainties

in the asymptotic behavior, making these methods unsuitable. Instead, it is convenient to

rewrite (27) with the kink profile g as the independent variable,

4g2(1 − g)2∂2
gθ + 4g(1 − g)(3 − 4g)∂gθ + (B + Cg2)θ +D = 0. (28)

The solution can be written as a power series in g or 1 − g, valid on the interval g ∈ (0, 1),

θ(g) =
∞∑

k=0

(αk + βkg
γ)gk =

∞∑

k=0

(α̃k + β̃k(1 − g)γ̃)(1 − g)k. (29)

The coefficients are given by recursion relations,

βk =
(γ + k − 1)(8(γ + k) + 12)βk−1 − (4(γ + k − 2)(γ + k + 1) + C)βk−2

4(γ + k)(γ + k + 2) +B
;

β̃k =
(4(γ̃ + k − 1)(2(γ̃ + k) + 1) + 2C)β̃k−1 − (4(γ̃ + k − 2)(γ̃ + k + 1) + C)β̃k−2

4(γ̃ + k)2 +B + C
;

γ = (1 − B/4)1/2 − 1; γ̃ = (−B − C)1/2/2. (30)

The analogous relations for α and α̃ are obtained from these by setting γ = γ̃ = 0. αk and

α̃k correspond to the inhomogeneous solution and are proportional to D,

α−1 ≡ 0; α0 = −D/B;

α̃−1 ≡ 0; α̃0 = −D/(B + C). (31)
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βk and β̃k correspond to the inhomogeneous solution, so their overall scales are not deter-

mined by the equation itself,

β−1 ≡ 0; β0 undetermined;

β̃−1 ≡ 0; β̃0 undetermined. (32)

However these scales are fixed by demanding that the two series and their derivatives be

equal at any intermediate point on the interval. After this, by choosing the appropriate

series for the point in question it is always possible to get quite rapid numerical convergence.

For the case of spontaneous CP-violation, where B + C > 0, we can again linearize the

equation of motion in θ as long as its value in the broken phase θ0 is small, that is, if −B/C
is not much smaller than unity. Expanding around θ0 gives an equation similar to to (27)

except with a term of the form Dg2 rather than D. However one is always free to shift θ

by a constant since this has no effect on the reflection asymmetry of the fermions, and a

judicious shift allows us to recover the original form of the equation (27), except that the

coefficients must be reparametrized according to

B → B cos θ0;

C → C cos 2θ0;

D → B cos θ0

(
tan θ0 −

1

2
tan 2θ0

)
, (33)

where cos θ0 = −B/C in terms of the original parameters. After this replacement the solution

for θ(g) is identical to that given above.

In previous papers it has been assumed that the kink ansatz, θ(z) = ∆θg(z) provides a

good approximation to the solution, where ∆θ is the difference between the two boundary

values. Because an overall additive constant is irrelevant for our imminent goal of determining

the asymmetry of fermions reflecting from the domain wall, we can also take the exact

solution for θ to vanish in the symmetric phase. In Figure 1 we compare the profiles of the

real solution and the ansatz, using the parameter set

λeff = 0.12, δ = 0.06, γi = 1, κ variable, (34)

corresponding to Higgs boson masses of 60 Gev, at the experimental lower limit. For very

small κ (ζ ≪ 1) the solution falls to zero in the symmetric phase (z = −∞) much more
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slowly than does the tanh ansatz. For intermediate values the two profiles are close to each

other, and as ζ becomes large, the real solution falls to zero before the ansatz does. This

behavior continues right up to the critical value (25) of ζ where spontaneous CP violation

begins, at which point increasing ζ causes the solution to head back toward the tanh ansatz.

For ζ = 8 the solution once again lies quite close to the ansatz, only to move again away

from it with even larger ζ . The moral of this story is that the tanh ansatz seems, somewhat

accidentally, to be a rather good approximation to the solution for certain narrow ranges of

κ including the natural values
√
κ ≈ mh0 , but may be poor elsewhere.

0

0.25

0.5

0.75

1

θ/
∆θ

-5 -4 -3 -2 -1 0 1 2 3 4 5

z/∆

 

8.75

8.5

8

7

1

.1

.01

tanh

Figure 1. The θ-profiles corresponding to the solution of equation (22) for the set of

parameters defined in (34) and for varying ζ = −κ/m2
h0 . The curves with ζ < 7.85 and

ζ > 7.85 correspond, respectively, to explicit and spontaneous breaking of CP symmetry.

All curves are scaled by ∆θ and shifted so as to be zero at the symmetric phase. The profile

corresponding to the tanh ansatz θ(z)/∆θ ≡ (1+ tanh(z/∆wall))/2 is given by the solid line.

It is interesting to note that the tanh ansatz in fact coincides with the exact solution
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of θ for special values of the parameters. This can easily be seen by substituting the guess

θ = α0 + α1g into eq. (28), resulting in the conditions B = −12, C = −16 in the case of

explicit CP violation. These in turn can be solved for ζ and some linear combination of γi.

The solution takes the form

ζ =
−B

16(aλeff/δ2 − 1)
;

γA = 2ζ − C/16. (35)

Normally the first of these equations would be quadratic in ζ because the parameter a

(eq. (6)) depends on ζ and γi through eq. (17) for the quartic couplings. However if we

assume that all the γi are equal (with the exception of γh0 ≡ 1), the second equation of

(35) fixes precisely the same linear combination of ζ and γi as appears in a. For example,

with λeff = 0.12 and δ = 0.06 as above, (35) gives ζ = 0.06 and γ = 1.1 when B = −12,

C = −16. This explains why the solution for ζ = 0.1 falls so close to the tanh ansatz in

figure 1. One can also find that the tanh solution is recovered when B = −(480)1/2, C = 40

for the case of spontaneous CP violation. These values also correspond to some hypersurface

in the physical parameter space, but it is less straightforward to find a representative here

than in the case of explicit CP violation above.

We have also found a more analytical solution for θ(x) which can be expressed as a single

integral. This is presented in the Appendix A.

4 Fermion Reflection Asymmetry from the Bubble Wall

With the solution for the spatial dependence of the CP-violating phase at hand, we now wish

to compute the fermion reflection asymmetry from the bubble wall. We will first consider

the scattering to the zeroth order, ignoring the effects of the background to the fermion

propagation and then generalize the treatment for the scattering of quasiparticles, i.e. for

the effective 1-particle excitations of the plasma at finite temperature. The zeroth order

treatment will be adequate for the scattering of fermions with large transverse momentum

and in particular for the scattering of the top quark (see appendix B for further details).

For light fermions and with small momentum the quasiparticle picture is essential, but even
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then we will be able to derive the corresponding reflection asymmetries from the zeroth order

results by simple mapping of the momentum variable.

4.1 Zeroth order equation

The different reflection probabilities for fermions and antifermions arise from having a spa-

tially varying, complex mass in the Dirac equation,

(i∂/−m(z)PR −m∗(z)PL)Ψ(t, z) = 0, (36)

where PL and PR are the chirality projection operators. The mass is given by replacing the

Higgs fields in eq. (1) by their vacuum expectation values,

m(z) = −y2〈Φ2〉 = − y2√
2
ρ(z)e−iθ(z)/2. (37)

The fermion states that interact with the bubble wall are eigenstates of energy, not

momentum, so one takes Ψ(t, z) = e−iEtψ(z). In the chiral representation of the Dirac

matrices, the Dirac equation then separates into two equations for a pair of two-component

spinors which we shall call ψ1 = (L−, R+)T and ψ2 = (R−, L+)T , where the letter denotes

the chirality and the subscript the direction of motion:

i∂zψ1 =

(
E −m
m∗ −E

)
ψ1; i∂zψ2 =

(
E −m∗

m −E

)
ψ2. (38)

The two equations are thus identical except for the interchange m ↔ m∗. The boundary

conditions for ψ1, describing an incoming wave from the symmetric phase (z < 0) plus

reflected and transmitted parts, are

ψ1(z) =

(
R(p)e−ipz

eipz

)
, z ≪ 0;

ψ1(z) = T (p)√
2p′(p′+E)

(
m∗

E + p′

)
eip′z, z ≫ 0, (39)

where R(p) and T (p) are the reflection and transmission amplitudes, m is the asymptotic

value of m(z) deep in the broken phase, and p′ =
√
E2 − |m2|. We use the prime to distin-

guish p′ from the momentum deep in the symmetric phase, p = E. The boundary conditions

are satisfied only for certain values of R(p) and T (p), for which we want to solve. The
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boundary conditions for ψ2 are the same except for the replacements m∗ → m, R → R̄ and

T → T̄ . Then the asymmetry in the reflection probabilities for L− → R+ and R− → L+ is

∆R(p) ≡ |R(p)|2 − |R̄(p)|2. (40)

The whole analysis can be repeated for the antiparticles simply by letting E → −E
in the original Dirac equation. It is straightforward to show that the respective equations

for ψ̄1 = (R̄−, L̄+)T and ψ̄2 = (L̄−, R̄+)T are the same as those for ψ1 and ψ2, except for

the change m → −m. But the overall sign of the mass can have no effect on measurable

quantities, so it follows that the reflection probabilities for ψ̄1 and ψ̄2 are also |R(p)|2 and

|R̄(p)|2, respectively.

For particles incident from the broken phase, we can easily find that the reflection prob-

abilities are related to those of the above situation by

|Rb
R→L|2 = |Rs

L→R|2;

|Rb
L→R|2 = |Rs

R→L|2, (41)

where we have indicated the particle chiralities in the subscripts and the superscripts b and

s refer to the broken and symmetric phases. The relations can be derived starting from the

solution for ψ1 obtained above (which describes the process L→ R in the symmetric phase)

and taking its charge conjugate, ψ′
1 = σ2ψ

∗
1 . This is a time reversal of the original solution,

and it satisfies the same equation as ψ1 except for the change m → −m. Therefore if we

form a third spinor ψ′′
1 made in just the same way as ψ′

1 except starting from the Dirac

equation with m → −m, it will be a solution to the original equation (38) for ψ1. If we

denote the reflection and transmission amplitudes for ψ1 as R(m) and T (m) respectively,

then those of ψ′′
1 are R∗(−m) and T ∗(−m). Next we can form a linear combination of ψ1

and ψ′′
1 (remember that ψ′′ goes backward in time),

(R∗(−m)ψ1 − ψ′′
1 ) /T ∗(−m) (42)

chosen so as to exactly cancel the incoming wave from the symmetric phase and to normalize

the incoming wave from the broken phase to unity. Thus our new solution describes reflection

R → L of a particle incident from the broken phase, and the reflection coefficient is seen to
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be −R∗(−m)T (m)/T ∗(−m). When we square this and use the fact that no observable can

depend on the sign of the mass, we immediately get the first of eqs. (41). This result is a

consequence of CPT invariance.

The reflection amplitudes can be numerically computed from (38) and (39) by a straight-

forward shooting algorithm to integrate the two differential equations. We have used this

method to verify the results of previous authors. However it breaks down when the quark

mass in the broken phase starts to greatly exceed the inverse wall width, that is when

ξ ≡ mc∆wall ≡
4m0

mh0

≫ 1. (43)

(where mc and m0 are the fermion mass values at T = Tc and T = 0, respectively). This is

apparently because the solution begins to undergo many oscillations over the region of the

bubble wall, which makes it prohibitively difficult to numerically solve the equation between

the two asymptotic regimes outside the wall. This is also the regime where the overall

reflection coefficients are exponentially suppressed in the fermion mass, so that this regime

should make a subdominant contribution to the total baryon asymmetry. We have used the

perturbative method of Funakubo et al. [24] to compute ∆R in this case. They found that

for the lowest order in θ ≪ π and for the particular wall profile g(z) given by (41), the

asymmetry is given by an integral involving θ(z), g(z), and the unperturbed negative- and

positive-chirality wave functions φ±
p (z) of the fermions,

∆R(p) = Cp

∫ ∞

−∞
dz φ+

p (z)φ−
p (z)

d

dz
(g(z)θ(z)) + c.c. (44)

The complex constant Cp in front of integral can be expressed in terms of ratios of gamma

functions and the wave functions φ±
p (z) are expressible in terms of hypergeometric func-

tions [24].

Some typical profiles for the reflection asymmetry as a function of momentum are shown

in figure 2. For later purposes it turns out that a simple exponential provides a reasonably

good fit for any value of the mass,

∆R(pz)

∆θ
∼=
{
A(ξ)e−(pz−m)/w(ξ), pz > m
0, pz < m

(45)

with a height and width that depend on the mass. ∆R vanishes for pz < m because then

both particles and antiparticles are totally reflected by the bubble wall. The actual functions
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∆R(pz) go smoothly to zero as pz → m, as shown in figure 2, but this occurs on a scale

much shorter than the width w(ξ), so that the exponential is not a bad approximation. Little

error is made by using eq. (45) in later expressions for the baryon asymmetry since these are

momentum integrals which do not especially weight the threshold region.
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Figure 2. The scaled ∆R(p)/∆θ profiles defined by eqs. (38−40) for certain representative

values of the mass parameter ξ = m(Tc)∆wall. The solid lines are the exponential fits given

by eq. (45).

A curious property of eq. (44) is that when one uses the tanh ansatz θ(z) ∼ g(z), the

sign of the asymmetry oscillates as a function of the quark mass, changing at small integer

values of the inverse wall width, ξ = 2, 3, 4. Thereafter it falls to a value smaller than our

computational accuracy. The real solutions for θ(z) typically display no such behavior, and

∆R falls much more slowly with increasing fermion mass than for the ansatz. Using our

complete numerical code we have verified that this is truly a behaviour of the ansatz in the

small θ limit and not an artifact of the linear approximation leading to (44). However, even
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for the ansatz, if the change in θ is sufficiently large that (44) is no longer valid, the full

numerical solution of the Dirac equation reveals no such oscillatory behavior. The difference

is shown in figure 3, where we plot the maximum value of |∆R(pz)| versus ξ for the first two

cases.
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Figure 3. The dependence of the maximum value of the ∆R profile on the mass parameter

ξ, for different values of the Higgs potential parameter κ in units of GeV2 (assuming a Higgs

boson mass of mh0 = 60 GeV.) For comparison with figure 1, the values of ζ = −κ/m2
h0

corresponding to these −κ values are 0.28, 3.9, 7 and 8, respectively.

We have also examined how the width w(ξ) of the ∆R profiles varies as a function of

the fermion mass. We have defined it to be the area under the curve ∆R(pz) divided by

the maximum value of ∆R discussed above. The dependence is shown for typical values of

the model parameters in figure 4. In fact we find that w(ξ) is largely independent of the

potential parameter κ. For the region of fermion masses shown in figure 4, it is fit well by

the expressions

w(ξ)/m = −(1.1 ln ξ + 0.54), ξ < 0.3;

w(ξ)/m = 0.19 ξ−1.2, 0.3 < ξ < 0.7;

w(ξ)/m = 0.15 ξ−1.8, ξ > 0.7; (46)
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where henceforth m stands for the mass of the fermion at the critical temperature. The

smaller values of ξ are of interest for the tau lepton.
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Figure 4. The width in momentum space w(ξ) of our fit (45) for the asymmetry in the

reflection probabilities ∆R(p), along with our fits (46) to w(ξ) for large and small ξ = m∆wall.

To make contact with the physical situation of interest, we note that for the choices of

parameters we have been using for the Higgs potential (only the value λeff = 0.12 is relevant

here), the dimensionless quantity ξ = m∆wall that characterizes the fermion mass turns out

to be

ξ = 11.7, top quark

ξ = 0.33, bottom quark

ξ = 0.12, tau lepton (47)

For the top quark this means that the reflection coefficient is extremely small except in a very

narrow region of momentum space. We find that the height times width of the reflection
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asymmetry profile is of order Aw ∼ 10−10m, which is seven orders of magnitude smaller

than that of the bottom quark. Henceforth we will ignore the top quark contribution to the

process of forming the baryon asymmetry.

For future reference we tabulate certain values of w(ξ), along with the corresponding

values of A(ξ) ≡ |∆R|max, using the parameters of eq. (34) and the representative value

κ = −1000:

ξ = 0.06; w/m ≃ 2.6; A ≃ e−3.2

ξ = 0.12; w/m ≃ 1.8; A ≃ e−2.7

ξ = 0.16; w/m ≃ 1.3; A ≃ e−2.5

ξ = 0.33; w/m ≃ 0.7; A ≃ e−1.9 (48)

4.2 Thermal corrections: small momentum regime

The propagation of fermions is affected by the ambient high temperature plasma in the early

Universe. Therefore the Dirac equation used in the previous subsection, which assumed that

the fermions obey the usual vacuum dispersion relations, apparently needs some modifica-

tion. We give a more detailed derivation of the modified Dirac equation in the appendix B,

where we argue that the zeroth order treatment given above is adequate to use in the large

transverse momentum region, and also derive the equations used below to study the small

momentum limit, where the effects of the background are most important.

Whenever the fermion momentum is small compared to the thermal masses, denoted by

ωL and ωR for the two chiralities of a given fermion species, induced by interactions with the

plasma [25, 26], the dispersion relations for the ith chirality, in the rest frame of the plasma,

are changed to [26] (see also appendix B):

ω = ωi ± |~k|/3, symmetric phase;

ω = ω0 ± ((∆ω/2 ± |~k|/3)2 + |m|2/4)1/2, broken phase, (49)

using the definitions

ω0 = (ωL + ωR)/2 and ∆ω = ωL − ωR. (50)
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They are shown in figure 5. The modes with the negative slope dω/dk close to the origin

are called holes [27], or abnormal [26], because their group velocity is opposite to their

momentum, and since they do not exist at low temperatures.
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Figure 5. Schematic view of the fermion dispersion relations in the small momentum limit

corresponding to equations (49). The solid lines pertain to the broken and the dashed lines

to the symmetric phase. The mass gap in the former, near the energy ω0, has half of its

zero-temperature value.

When the momentum is purely in the z direction, the dispersion relations correspond to

an effective Lagrangian whose resulting Dirac equation is, instead of (38),

i

3
∂zψ1 =

(
ω − ωL −m/2
m∗/2 −ω + ωR

)
ψ1;

i

3
∂zψ̄2 =

(
ω − ωR −m∗/2
m/2 −ω + ωL

)
ψ2. (51)

For the antiparticles, one must change not only the sign of ω but also the ωi’s since purely

thermal effects increase the energies of both particles and antiparticles equally.

The quasiparticle dispersion relations given here are a linear approximation valid only

for momenta much smaller than the scale ω0. In particular the abnormal mode energies do

not really fall monotonically to zero but reach a minimum and start to rise again. However

this happens on a scale ω0, which is much larger than the scale of the exponential decay
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in ∆R(p) apparent in our previous solutions of (38), and which will also be supplied by

the solutions of (51) a posteriori. Therefore, setting aside the possible dependence on the

parallel momentum, the linear approximation is reasonable for computing the effects of the

quasiparticles on baryon production.

Despite the differences between (51) and the original Dirac equation (38), there is a simple

mapping between their reflection coefficients because each equation can be transformed into

the other. Let z̃ = 3z, ψ1,2 = e±i∆ω z̃/2ψ̃1,2, and ω̃ = ω−ω0. It is straightforward to show that

the new equations resulting from this transformation are the same as one would obtain from

the Dirac equation (38) by making the replacement E → ω̃ and m→ m/2 in the latter. The

reflection asymmetry is given by exactly the same function ∆R(p), but the correspondence

between p and the actual (outgoing) momentum k is

p = k/3 +

{
∆ω/2, L+, R− modes
−∆ω/2, R+, L− modes

. (52)

This applies to the excitations, whose energies exceed ω0. The Dirac equations for the modes

with ω < ω0 are the same except for the opposite sign of ω̃ = ω−ω0. The sign change means

that there is a mapping between the Dirac equations for ω > ω0 and ω < ω0 modes which

makes them look the same except for the interchange of m and m∗. Therefore the reflection

asymmetry changes sign along with ω − ω0 [28]. To be explicit, recalling that ∆R(p) is

the difference in reflection probabilities between the processes L− → R+ and R− → L+ for

ω > ω0, −∆R(p) is the reflection asymmetry for the modes with ω < ω0, which are depicted

in figure 5.

We assumed that the components of momentum parallel to the wall were zero in this

discussion. For the usual dispersion relations which are valid at large momenta this is no

limitation because one can always boost to the frame where these components are zero to

solve the Dirac equation. In the small momentum region however, the dispersion relations of

the quasiparticles are clearly not Lorentz invariant, so that if one does the same boost, they

take on a different form which is incompatible with the boundary conditions of the Dirac

equation as we have written them. The exact treatment would be quite cumbersome, so we

will compromise by ignoring the dependence on the parallel momenta when they are smaller

than ω0. When they are greater than ω0, the usual dispersion relations become appropriate
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and we can use the first form (38) of the Dirac equation.

4.3 Decoherence during the reflection

We have so far completely ignored the effects of damping in our treatment of the reflection

from the wall. In reference [29] it was argued that the continuous scatterings off the back-

ground particles experienced by the reflecting quarks leads to a significant loss of coherence

of the wave function. They accounted for the scatterings by including the complex part

of the quark self energy into the Dirac equation, and found a tremendous suppression of

the final baryon asymmetry in the minimal standard model. The issue of how to correctly

account for the decoherence phenomenon is still controversial [30], and we do not wish to

get into the details of that argument here. Here we will demonstrate that the neglect of

damping is much better justified for the situation in which we are interested.

Let us begin with the damping in the small-momentum region. The damping rate of a

fermion at zero momentum was first computed in a gauge invariant way in references [31, 32]

with the result:

γF (k = 0) = a(N,Nf )CF (N)
g2T

16π
, (53)

where CF = (N2−1)/2N is the usual casimir operator eigenvalue and the constant a(N,Nf)

has a weak dependence on the group index N and the number of fermion families Nf . In

QCD with three families, references [31, 32] give a(3, 3) ≃ 5.7 which, with αs ∼ 0.1, leads

to a rate 2γq ∼ 0.19T . This result was used by ref. [29] to obtain a mean free path of the

quarks of ℓq ∼ 1/6γq ∼ 0.9/T , which is significantly less than the smallest expected wall

widths ∆wall
>∼ few/T .

However, this large result for the quark damping rate is almost exclusively due to strong

interactions. There exists no standard model computation of γ for the leptons in the liter-

ature, but from the results of [32] for pure SU(2), a(2, 2) ≃ 5.8 and a(2, 4) ≃ 6.3, one can

estimate that aτ ≃ 6. Then (53) straightforwardly gives γτ ≃ 0.04T , hence ℓτ ∼ 4.4/T . This

result is comparable to the wall width predicted in the model under consideration, so we

expect that scattering of low-momentum leptons by the plasma will not strongly damp their

quantum mechanical reflection from the wall, even if the more restrictive picture of the ref.

[29] is the correct one.
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At large momenta there are no problems with the infrared properties of the gauge inter-

actions that led to the difficulties in the evaluation of γ at low momenta [31, 32] and the

damping rate is given by the usual scattering computation. One then expects that the damp-

ing length would be roughly one third of the diffusion length. Thus for quarks we estimate

that ℓq ∼ Dq/3 ≃ 2/T and for leptons ℓL ∼ 40/T . One might be led to believe that at least

for leptons, the neglect of damping during the reflection process is a good approximation,

given our determination of 10/T for the wall width. However one must keep in mind that

the important reflections are coming from particles with small momenta perpendicular to

the wall, whose other momentum components are typically of order T , so that they approach

the wall at a glancing angle and therefore typically undergo several interactions during their

traversal of the wall [8]. In our treatment below we will distinguish between the particles

with large and small momenta parallel to the wall, the latter of which are much less sensitive

to the decoherence effects.

To conclude this section we note that it is not yet clear how to consistently compute the

effects of decoherence in the present mechanism of baryogenesis. Nevertheless, in the end we

will find that the reflection of tau leptons dominates baryon production and moreover, for

these particles the region of phase space where all components of the momenta are small (so

that they are approaching the wall from a sharp angle and do not undergo many scatterings)

dominates over the large momentum region. Therefore we do not expect that the decoherence

effects will be crucial for our final results.

5 Fermion Transport

To compute the baryon asymmetry resulting from fermions reflecting off the wall, it is

necessary to understand the diffusion of reflected fermions back into the symmetric phase.

There exist several different ways of treating this in the literature: Monte Carlo simulations

[7], the diffusion equation [8], and solving a more exact form of the Boltzmann equation,

called the Fokker-Planck equation [33]. Although the Fokker-Planck equation should in

principle be more accurate, more work is needed to establish why it gives different results from

the diffusion equation, which has heretofore received more attention. For ease of comparison
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with previous work, we will also adopt the diffusion equation as our framework for solving

the transport problem.

Our approach will proceed in three steps. First we compute the flux of net right-handed

and left-handed fermion numbers into the symmetric phase in the vicinity of the bubble

wall. This results in an initial chiral asymmetry in front of the wall, in which we are

interested because it is what biases sphalerons to produce baryons, since the sphaleron

rate is proportional to the asymmetry in left-handed fermions. However, flavor-changing

processes will redistribute the initial asymmetry amongst the various species of particles, so

we must next take into account the interactions which are fast compared to the diffusion

rate, and find new initial values for the densities near the wall after chemical equilibrium

is established. In the third step we consider the diffusion of the particle asymmetries into

the symmetric phase, incorporating the Debye screening of hypercharge using the results of

reference [37]. The goal of these computations is a spatial profile for the total left-handed

fermion number which can be used to compute the rate of baryon number violation, assumed

to be the slowest process of interest in the problem. Integration of this rate finally gives the

baryon asymmetry.

5.1 Fermion Flux in the Symmetric Phase

The first step toward generating a baryon asymmetry is to create an asymmetry in the den-

sity of left-handed particles in the symmetric phase, since it is these which drive sphalerons

to create baryons. The left-handed asymmetry arises due to four contributions: left-moving,

right-handed particles R− reflect into right-moving, left-handed particles L+ with reflection

probability |R(p)|2, where p labels the momentum in the symmetric phase; using eq. (41),

L+ fermions are transmitted from the broken phase with probability 1 − |R(p)|2; the anal-

ogous processes with antiparticles give a cancelling contribution, however with a different

probability |R̄(p)|2 because of the CP violation in the wall. For a given momentum, this

gives a left-handed current of

JL ∝ |R|2fs(R−) + (1 − |R|2)fb(L+) − |R̄|2fs(R̄−) − (1 − |R̄|2)fb(L̄+), (54)
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where fs,b(X) denotes the Fermi-Dirac distribution function for species X with subscript

s or b showing whether the corresponding particle is propagating in the symmetric or the

broken phase. Because the wall is moving, f(X) will be different for left- and right-movers.

It is however the same for particles and antiparticles, so that using eq. (40), (54) becomes

JL ∝ ∆R(p)(fs(R−) − fb(L+)). (55)

Thus the asymmetry vanishes in the absence of either CP violation or the velocity of the

wall, as expected. The current of right-handed fermions has the opposite sign due to the

CPT theorem (as can be seen from comparing the Dirac equations for right- and left-handed

particles),

JR ∝ −∆R(p)(fs(L−) − fb(R+)). (56)

To the extent that left- and right-handed particles have identical dispersion relations, hence

equal distribution functions, the sum of JL and JR is zero, so that there is no net current

of baryon or lepton number. In fact the two chiralities get different thermal energy shifts

due to their different interactions with the background plasma particles; this will be relevant

when considering the contributions to the baryon asymmetry from the reflected quarks.

The full expression for the flux is an integral over all the momenta of the expressions like

those above, weighted by the group velocity of the right-moving particles which is obtained

from their dispersion relations. We will divide the momentum space into two regions, de-

pending on whether the momenta are large or small compared to the thermal self-energies.

The large-momentum region gives a contribution to the flux which is similar to what we

would have computed with the usual dispersion relations, because in this region the temper-

ature corrections become small and the Lorentz symmetry is approximately restored. The

small-momentum region gives new contributions associated with the normal and abnormal

quasiparticle excitations (49).
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5.1.1 Large momentum region

We will first concentrate on the large-momentum region. For the flux of left-handed particles

per color degree of freedom (Nc = 3 for quarks, 1 for leptons), this region contributes

J l.m.
L

Nc

∼=
∫ ∞

|m|

dkz

2π
∆R(kz; |m|)

∫ ∞

ω0

dk||k||
2π

kz

E1
(f(E1 − vkz) − f(E1 + vk′z)) (1 − f(E1 + vkz)) ,

(57)

where the factor kz/E is the group velocity in the z-direction and

E1 =
√
|~k|2 + |m|2 + 2ω2

L,

k′z =
√
k2

z − |m|2. (58)

Note that the lower limit on the parallel momentum integration in (57) has been somewhat

arbitrarily chosen to be k||,min = ω0; we will come back to this shortly. To a good approxima-

tion the kz dependence of E1 can be neglected in the phase space distribution. Then taking

the limit of small wall velocity we can expand the phase space functions in v after which the

k|| integral is elementary. Finally, using the form (45) for the reflection asymmetry ∆R, we

obtain the result

J l.m.
L /Nc ≃

v∆θAw|m|2
4π2

rL(w/|m|) f(EL
1 )(1 − f(EL

1 )/2), (59)

where

EL
1 =

√
ω2

0 + 2ω2
L + |m|2;

rL(w/|m|) =
(
1 + 2w/|m| + 2w2/|m|2 +K2(|m|/w)e|m|/w

)
. (60)

Here K2(x) is the Bessel function of the second kind. For small w/|m| the function rL(w/|m|)
approaches unity, which is the appropriate limit to take for the top quark. For all the other

fermions w/|m| is not small and one obtains rL(w/|m|) ≃ (2 + 4w/|m| + 4w2/|m|2). For

example for the tau lepton with ξ ≃ 0.12, w/|m| ≃ 1.8 and rL ≃ 22, while for the bottom

quark with ξ ≃ 0.33, w/|m| ≃ 0.7 and rL ≃ 6.2. Thus one sees that the flux is rather

sensitive to the fermion mass.

The energy EL
1 reflects how the flux depends on the choice ω0 for the lower limit of k||-

integration. This value was chosen to insure that the finite temperature corrections are small
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at higher momenta, but we might have instead used k||,min = O(few)ω0. In order to see how

this ambiguity affects our results, we need to know the thermal masses of the bottom quark

and the tau lepton (the top quark will no longer concern us because its reflection coefficient

is so small that it makes a negligible contribution compared to these lighter particles); at

the one-loop level they are given by

ω2
bL/T

2 = g2
s/6 + 3g2/32 + g′2/288 + y2/16 ≃ 0.40

ω2
bR/T

2 = g2
s/6 + g′2/72 ≃ 0.24

ω2
τL/T

2 = (3g2 + g′2)/32 ≃ 0.044

ω2
τR/T

2 = g′2/8 ≃ 0.016. (61)

We have ignored all Yukawa couplings except for that of the top quark, y = 1.4 and we

evaluated the gauge couplings at MZ (which is close to the critical temperature in our

model): αs = 0.12, g2 = 0.42 and g′2 = 0.13. Using these numbers one finds that βEL
1τ ≃

0.34 − 0.5 and correspondingly f(EL
1τ ) ≃ 0.42 − 0.38 when the lower limit is varied over

the range k2
||,min = (1 − 5)ω0. Similarly for the bottom quark we find βEL

1b ≃ 1.1 − 1.5

and f(EL
1b) ≃ 0.26 − 0.18. To a reasonably good accuracy then the contributions to the

left-handed flux coming from the high-momentum region are, using (48),

J l.m.
L (τ) ≃ 2 × 10−2v ∆θ m3

τ

J l.m.
L (b) ≃ 9 × 10−3v ∆θ m3

b . (62)

Thus the initial asymmetry in left-handed (B + L) due to bottom quarks from the high-

momentum region is larger by a factor of 16 than that due to tau leptons. (Remember that

each quark carries B = 1/3.)

5.1.2 Small momentum region

We now turn to the contribution to the flux coming from the small-momentum region. This

region of phase space was found to be crucial for standard model baryogenesis [26], because

only at small momentum does one have the hope of avoiding GIM suppression in the CP-

violation arising from the CKM-matrix. At first it would appear that this region does not

have the same significance in the present mechanism, where the CP-violation comes from
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the complex phase of the Higgs field, but we will find that it is actually more important than

the large-momentum regime. We first compute the reflected current in one spatial dimension

(1D) model and then estimate the 3D-current from that of 1D using a simple phase space

argument.

After some straightforward algebra one can show that the 1D left-handed particle flux,

for example, is given in the small momentum region by

J s.m.
L /Nc =

∫ ∞

ωmin

dω

4π
∆R(ω − ω0; |m|

2
)(1 − f(ω + vkN

L ))
{
f(ω + vkN

R ) − f(ω + vkN
L

′
)
}

−
∫ ωmax

ωco

dω

4π
∆R(ω0 − ω; |m|

2
)(1 − f(ω + vkA

L ))
{
f(ω + vkA

R) − f(ω + vkA
L

′
)
}
(63)

where the limits of integration are

ωmin = ω0 + |m|/2;

ωmax = ω0 − |m|/2, (64)

and the momenta the left-handed particle transmitted into the symmetric phase, the right-

handed particle incident from the symmetric phase and the left-handed particle transmitted

from the broken phase, for the normal and abnormal modes, are respectively

kN
L = kA

L = 3(ω − ωL);

kN
R = kA

R = 3(ωR − ω);

kN
L

′
, kA

L

′
= 3



−∆ω

2
±
√

(ω − ω0)2 − |m|2
4



 . (65)

In arriving at (63) we have transformed the momentum integral into an integral over energy

using the relation dk(dω/dk) = dω, where (dω/dk) is the group velocity of the excitation, and

expressed the relevant momentum variables (52) in terms of the energy difference ω−ω0. The

relative minus sign between the two terms was explained below eq. (52). Additional factor

of 1/2 included to the phase space measure comes from the wave function renormalization

of the incoming flux (Appendix B) and 1 − f(ω + vkN,A
L ) is the Pauli blocking factor. The

integration limits (64) have a simple interpretation, as illustrated in fig. 5: for any energy in

between ωmax and ωmin the states are totally reflected because they do not have enough energy

to penetrate the broken phase. The cutoff ωco is due to the fact that the linear dispersion
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relations break down and the quasiparticles become unstable at the momenta that would

correspond to such small energies. However the actual value of ωco is of no consequence

because the sharp momentum dependence of ∆R cuts off the integral at energies well above

this value. Then, expanding the difference of the two distribution functions to first order in

the wall velocity, we obtain simple integrals over the reflection asymmetry ∆R. Using the

form (45) for ∆R, the resulting 1D-flux is

J1D
L /Nc ≃ −3v∆θ

4πT
A(ξ/2) |m|w(ξ/2)

e2βω0

(1 + eβω0)3
rS(w/|m|);

rS(w/|m|) =
(
1 + 2w/|m| +K1(|m|/2w)e|m|/2w

)
. (66)

Because the thermal dispersion relations (49) are not Lorentz invariant, it is not straight-

forward to relate this result to the desired 3-D case. If we assume however that the k||-

dependence of the reflection asymmetry is small, and take a reasonable upper cutoff of

k||,max = ω0 on the integral over these momenta to ensure that the small-momentum disper-

sion relations are still valid, we find the result

J s.m.
L

Nc
∼ − 3v∆θ

16π2T
A(ξ/2) |m|w(ξ/2)ω2

0

e2βω0

(1 + eβω0)3
rS(w/|m|) (67)

where we used the superscript to distinguish this contribution from that of the large-

momentum region (59–62), and the ratio of the three-dimensional phase space to that of

one dimension is ∫ ω0

0

d2k||
(2π)2

=
ω2

0

4π
, (68)

taking into account the relevant cutoff on the momentum which defines what we mean by

the small-momentum region. Using this estimate, we find that ratio of fluxes from the small-

to large-momenta regions are approximately

J s.m.
L

J l.m.
L

=

{
−0.4, τ lepton;
−6, b quark.

(69)

It will be shown in section 5.3 that the large-momentum contributions get a suppression of

approximately m/T in their contribution to the chiral asymmetry that develops in front of

the bubble wall. This being a few percent both for the tau lepton and the b quark, we see that

the small-momentum region makes the dominant contribution to baryogenesis. Moreover, as
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argued in section 4.3, the large-momentum particles approach the wall at a glancing angle

and undergo more scatterings with the plasma in the wall, hence their effects will ultimately

be even further suppressed.

5.1.3 The total flux

To conclude this section we mention that due to the difference of the thermal distribution

functions for the left- and right- handed particles, the total flux JL + JR is nonzero, as

was first pointed out in ref. [34]. We will see that the total flux of leptons is unimportant

compared to the left handed flux, but for quarks one must keep track of both. Based on the

previous estimate of eq. (59), the contribution to the total flux from the large momentum

region is given by

J l.m.
tot ∼ Nc

v∆θAw|m|2
4π2

rL(w/|m|) (EL
1 −ER

1 )
∂

∂E1
(f(1 − f/2)) (70)

where ER
1 follows from the definition of EL

1 in (58) by replacing ωL by ωR. For the bottom

quark the ratio of the fluxes implied by eqns. (62) and (70) is roughly

J l.m.
tot (b)

J l.m.
L (b)

≃ −0.1. (71)

The total flux coming from the small momentum region vanishes at linear order in the wall

velocity, so we must expand the distribution functions of eq. (63) to second order in vk,

with the result that the total flux is proportional to the previously computed chiral flux (67)

according to
J s.m.

tot

J s.m.
L

≃ 3vβ∆ω
eβω0 − 2

eβω0 + 1
, (72)

which gives ≃ −0.04v for the bottom quark. For the taus the total fluxes are clearly ignorably

small. For bottom quark however, because total baryon number is conserved by the QCD

sphaleron effects and left-handed baryon number is not, as will be seen below, it will turn

out that these ratios do not remain small after the reflected quarks interact with the plasma.

5.2 Equilibration of Species

Knowing the flux of the two chiralities of a fermion at the bubble wall gives us an initial

condition for the problem of how they diffuse into the symmetric phase in front of the
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wall. During the diffusion process there will be interactions of the fermions with particles

in the plasma which change the net fermion densities (the asymmetry between particles and

antiparticles), redistributing them amongst other species. For example, interactions with

Higgs bosons will convert between the two chiralities. A precise treatment would require

the equations for the transport of the two chiralities to be coupled by such interactions.

For simplicity we prefer to consider such reactions as either being slow or fast compared to

the transport time so that we can deal with uncoupled transport equations. If the reaction

times are borderline between these two extremes, we can interpolate between them to get

an idea of what the more exact treatment would give. In our model it will turn out to be

unnecessary to do so, however.

To decide which interactions are important let us estimate the time scales. The diffusion

time scale depends on the bubble wall velocity and the diffusion rate, as will become clear in

the next subsection, and is given by v2/D where D is the diffusion coefficient. This rate is

approximately 10−3T for quarks at a temperature T , and 10−4 for leptons, assuming a wall

velocity of v = 0.1 for definiteness. The only interactions with a competitive rate are the

strong sphalerons, which are the QCD analog of the usual sphalerons, and the interactions of

Higgs bosons with top quarks. The former have a rate around 10−2T implied by appropriate

scaling of the weak and strong coupling constants [34], and the latter we estimate to be

10−3T , making certain reasonable assumptions about the Higgs boson masses; the rate of

normal sphaleron interactions, by contrast, is 5 × 10−5T , consistent with our assumption

that it is smaller than the other relevant rates.

Clearly we want to impose the equilibrium of strong sphalerons on our system of fermion

asymmetries, conveniently characterized by local chemical potentials for each species. This

has important consequences for the quark asymmetries, essentially erasing them up to small

corrections (known as mass corrections), although it has no effect on lepton asymmetries.

The Higgs-top interactions are marginally in equilibrium on the diffusion time-scale, so we

will consider both extremes, when they are approximated as being fast and slow.

Let us introduce chemical potentials, localized at the wall. Since there is no practical

difference between the first and second generations, we need only µu
L,R and µd

L,R to represent

up, down, charmed and strange quarks of both chiralities; these will be produced from top
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and bottom quarks by the strong sphalerons. We also imagine that the tau is the only

lepton whose Yukawa coupling is large enough for a significant asymmetry to be produced

through reflections at the bubble wall, so that we needn’t concern ourselves about the first

two generations of leptons. It is also useful to define a quantity µ̄ for each species,

µ̄i = µi

(
1 − 3m2

i

π2T 2

)
≡ µi (1 − δi) , (73)

where m2 is the thermal mass of the particle, since we are interested in the symmetric phase.

µ̄ is directly proportional to the density of particles [34]-[36], whereas µ has this property

only when the mass corrections are neglected.

We can also define quantities proportional to the densities of various flavor and chiral

combinations of baryon and lepton number, as well as weak hypercharge,

B1+2
L(R) = 2(µ̄u

L(R) + µ̄d
L(R))

B3
L(R) = (µ̄t

L(R) + µ̄b
L(R))

Bij
R = µ̄i

R − µ̄j
R

L3
L = µ̄τ

L + µ̄ντ

L

L3
R = µ̄τ

R

Y = 2(µ̄u
L + µ̄d

L) + (µ̄t
L + µ̄b

L) − (µ̄τ
L + µ̄ντ

L )

+ 2(4µ̄u
R − 2µ̄d

R) + (4µ̄t
R − 2µ̄b

R)

− 2µ̄τ
R + 2n(µ̄H0 + µ̄H+), (74)

assuming for the moment that there are n Higgs doublets which are in equilibrium with

each other. To find the new equilibrium conditions of the chemical species we must impose

constraints on the µ’s for each reaction considered to be fast. For the strong sphalerons the

condition is

2(µu
L + µd

L) + (µt
L + µb

L) = 2(µu
R + µd

R) + (µt
R + µb

R) (75)

since they change the chirality of each flavor of quark by two units. The Higgs constraint

from interactions with top quarks is

µH0 = µt
R − µt

L or µH+ = µt
R − µb

L. (76)
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The distinction between the isospin components of weak doublets will turn out to be irrel-

evant for our results, so that we need not worry about the rate of the weak interactions.

The reason is that the weak interaction constraints only serve to determine the chemical

potential of the W± bosons, but have no effect on the baryon and lepton asymmetries.

The equilibrium conditions must be solved subject to the constraints that certain quan-

tities are conserved, namely

B1+2 = B1+2
L +B1+2

R ; B3 = B3
L +B3

R;

Bud
R = 0; Bbu

R ; L3
L; L3

R; Y (77)

The last of these is hypercharge; we will deal with the Debye screening of hypercharge in

the next subsection. Here let us only note that the list of conserved quantities is augmented

with one more, Btu
R say, if the Higgs equilibrium condition (76) is removed.

Our goal now is to solve for the linear combinations of chemical potentials that corre-

spond to total left-handed baryon and lepton number, because it is these that drive the

weak sphalerons to make baryons. It is easy to see that if we ignored the mass corrections

that distinguish µ’s from µ̄’s, the left-handed baryon number vanishes due to the strong

sphalerons, for then we would have B1+2
L +B3

L = B1+2
R +B3

R, which coupled with the initial

condition that B1+2 + B3 = 0 from the reflections would give zero for both chiralities of

total baryon number. Actually there is another correction to this statement since, as we

mentioned, the net flux of baryon number at the wall is not quite zero due to similar thermal

mass corrections. Both effects save the quark reflection asymmetry at the wall from making

a vanishing contribution to the final baryon asymmetry. The situation for leptons is consid-

erably simpler: to the order of our approximations, nothing happens to them once they are

produced at the wall, aside from the diffusion process which is yet to be considered.

It is a straightforward algebraic task to solve the system of equations for the final chemical

potentials in terms of the initial ones. The initial ones are proportional to the fluxes that we

computed in the last section; the exact proportionality between fluxes and densities will be

discussed shortly. For now we will simply express the final values of left-handed baryon and

lepton number, after equilibration has taken place, in terms of conserved quantities, which

can be replaced by their initial values. To first order in the thermal mass corrections, the
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equilibrated values of left-handed baryon number are found to be

Beq
L =

1

2

(
B1+2 +B3 + (δbR

− δtR)Bbu
R

)

−
(
δuL

+
1

2
(δuR

+ δdR
) +

1

4
(δbR

− δtR) − δtR − δtL

)

×
{

(Y + L3
R + (6 + 4n)Bbu

R )/(9 + 14n) Higgs-top equilibrium;
(Bbu

R +Btu
R )/3 no Higgs-top equilibrium.

(78)

Notice that this equation would vanish if we ignored thermal masses because the total baryon

number in each generation is nonzero only due to the thermal masses, as our equation for

the total flux of fermion number in the preceding section showed. Now since the right-hand

sides are expressed in terms of conserved quantities, we can evaluate them at the initial time,

when the asymmetries were produced at the wall, before any equilibration takes place. All

the lower generation asymmetries are essentially zero, and hypercharge Y can be expressed in

terms of the B and L asymmetries. Furthermore since total B or L is a first-order thermal

effect, it can be ignored whenever multiplied by thermal masses as this would be second

order. Evaluating the thermal masses,

δuL
+

1

2
(δuR

+ δdR
) +

1

4
(δbR

− δtR) − δtR − δtL = − 3

π2

(
7y2

32
+
g′2

32

)
;

δbR
− δtR = − 3

π2

(
y2

8
+

3g′2

72

)
, (79)

and taking n = 2 Higgs doublets, the equilibrated value of total left-handed baryon number

becomes

Beq
L = 0.5B3 +

{
1.4 × 10−4(1 − 0.55h2

t )B
b
L − 0.01Bt

L, Higgs-top equilibrium;
1.4 × 10−4(1 − 2.3h2

t )B
b
L − 0.04Bt

L, no Higgs-top equilibrium.
(80)

Although we kept the top quark contribution for completeness here, it is practically zero.

Furthermore the difference between considering the Higgs-top interactions to be in or out of

equilibrium is obviously small for the bottom quark. It should be noted how the left-handed

asymmetry is diluted by the equilibrating processes, leaving the initially much smaller total

current, conserved by the strong sphalerons, as the dominant source of the injected baryonic

asymmetry. Using the previous results (69, 71, 72) for the ratios of injected fluxes, we get

Beq
L

∼= 0.5B3 = 0.5Bb
L

(
J s.m.

tot

J s.m.
L

J s.m.
L

JL
+
J l.m.

tot

J l.m.
L

J l.m.
L

JL

)

= (0.01 − 0.03v)Bb
L, (81)
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where JL is the sum of the large- and small-momentum contributions. Let us now compare

this to the injected τ lepton current; using (Js.m.
L (b)+J l.m.

L (b))/(Js.m.
L (τ)+J l.m.

L (τ)) = −400,

the ratio is
Beq

L

Leq
L

≃ −1 + 3v. (82)

Therefore we see that the effect of the sphalerons is to reduced the initial preponderance

of b quarks over τ leptons in the injected flux so that they are roughly equal in strength

after equilibration. However in the next section we shall see that there is an additional large

suppression of the quarks coming from the much larger diffusivity of the leptons, so that in

the end the contribution from the quark reflections will be completely overwhelmed by that

coming from the τ lepton reflections. Hence the major conclusion to be drawn from (81) is

that the quark reflection is unimportant for the present mechanism of baryogenesis.

Of course for the left-handed lepton flux, which will also bias the sphaleron interactions,

we have the trivial relation that LL = Lτ
L since under our assumptions the Higgs interactions

of the tau lepton are too slow to change its asymmetry. However it has been noted that the

Yukawa couplings of the fermions may be larger than we have assumed, since it is possible

that the VEV’s of the two Higgs fields evolve differently than in our simple model. In

this case the tau lepton might have been in equilibrium with the Higgs field on time scales

comparable with the diffusion time. The equilibrium conditions would then suppress the

final value of left-handed lepton number. By repeating the previous computations with the

new equilibrium conditions for Higgs-tau and Higgs-bottom interactions, we find that

L3
L = Lτ

L

{
1 no Higgs-tau equilibrium;
(6n+ 3/2)−1 Higgs-tau equilibrium,

(83)

the latter of which cases we include for completeness.

These results can now be used to correct the initial fluxes obtained in the previous section,

since we are using the separation of time scales to assume that the initial fluxes at the wall

are quickly altered by the establishment of chemical equilibrium before much diffusion into

the plasma takes place. We have found that the lepton flux is unaltered (unless the VEV’s

of the two Higgs fields evolve in a complicated way between the phase transition and now),

but that for left-handed quarks is reduced by roughly a factor of 20 from its pre-equilibrium

value.
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5.3 Debye Screening and Diffusion

So far we have computed the initial fluxes from the wall and determined how they are changed

by the chemical equilibrium of fast interactions (primarily strong sphalerons) in the plasma.

The next step is to propagate the fluxes into the symmetric phase, so see how efficiently they

are able to bias the baryon violating interactions of the weak sphalerons.

In the diffusion equation approach it is assumed that the density n of chirality in front

of the wall, due to asymmetric reflection of quarks or leptons, is described by the continuity

equation and Fick’s plus Ohm’s law,

∂tni + ∂zJi = 0; Ji = −Di∂zni + σiE. (84)

Here Di is the diffusion coefficient for the ith particle species, and σi is its conductivity under

the influence of a weak hypercharge electric field which is induced through the particles

themselves via Gauss’s law, ∂zE =
∑
yini, where yi is the hypercharge of the ith species.

It is this coupling between the densities and the gauged charge which gives rise to Debye

screening of a certain linear combination of the densities. Eq. (84) and Gauss’s law result in

coupled equations for the ni,

vn′
i +Din

′′
i − σi

∑

j

yjnj = 0, (85)

using the fact that for steady state solutions in the rest frame of the bubble wall, ni has the

form ni(z − vt), so that we can replace the time derivative in (84) by −v∂z . The general

solution of (85) is given in ref. [37]. There it is shown that, for the purpose of computing

the baryon asymmetry, one can account for the effect of screening by applying a correction

factor Fi ∼ O(1) to the solution one would have got by ignoring the screening term in (85),

ni(z) = Fin0e
−vz/Di , (86)

where n0 is the density at the wall ignoring screening, to be determined below. As will

become apparent, the important quantity for baryon production is the integrated density in

front of the wall, ∫ ∞

0
dz ni(z) = Fin0Div

−1. (87)
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This means that the contribution from quark reflections to the baryon reflection will be

doubly suppressed compared to that of leptons, as has been emphasized in [8]; once by the

strong sphaleron suppression of the flux itself, and again because the diffusion coefficient for

quarks is much smaller than that for left-handed leptons: 6/T 2 versus 110/T [8]. In ref.

[37] it was shown that Fl = 1.75 for the left-handed leptons in the case that the quarks are

completely neglected. Moreover we checked that including the quark fluxes, as computed

from the results of section 5.2, would produce only a minor change which could be accounted

for by taking Fl ≃ 1.85 instead. Since the quark contribution is further suppressed by

thermal damping (see section 4.3), it is clearly neglible in comparision to the contribution

of tau lepton reflection.

We must now determine the chiral density at the wall, n0, in terms of the chiral flux

injected at the wall, JL, which was computed in section 5.1. To do so, we will imagine that

the wall deposits an infinitesimal amount of chiral density at each point in space xi when

it passes by at time ti = xi/v, which at first is localized exactly and then spreads out in

accordance with the diffusion equation. Integrating all these contributions gives the total

chiral density due to the flux of particles reflected from the wall:

N(x− vt) = c
∫ vt

−∞
dxi

e−(x−xi)2/4D(t−ti)

√
t− ti

= c
∫ ∞

0
dz

e−v(x−vt+z)2/4Dz

√
z

. (88)

Notice that (88) is a solution to the diffusion equation (85), ignoring the screening term, but

with a delta function source localized at x = vt, the position of the wall. The second form

comes from the changes of variables xi = z+vt, and the constant of proportionality c can be

determined by conservation of particle number. To do so, we note that for x− vt→ ∞, the

expression (88) approaches an asymptotic value N0 = 2c
√
πD/v. Since the wall is moving

at velocity v, the rate at which the chiral charge is being created per unit area is N0v, and

this must be equal to the flux JL injected from the wall.

However this is not yet the correct identification of n0 in eq. (86) because we must

remember that there is an equal and opposite chiral flux being injected by the wall in the

opposite direction. However the diffusion equation does not “know” it is being injected in

2The value 6/T agrees with an independent calculation done in ref. [33]. It can be shown the the
momentum-space diffusion coefficient D̃ computed there is related to the normal one by D = T 2/D̃.

38



the opposite direction; it only knows that it has the opposite sign. If we were to add the two

contributions naively, they would exactly cancel each other. What must happen, in fact, is

that the two fluxes penetrate a distance ∆P into the plasma before they become thermalized

and the diffusion equation becomes a valid description [8]. Therefore the correct expression

for the chiral density is

n(z) = N(z + ∆P ) −N(z − ∆P ), (89)

and if ∆P ≪ D/v, its integrated value is approximately given by

∫ ∞

0
dz n(z) = 2JL∆P/v, (90)

which must still be corrected with the factor Fi to account for hypercharge screening as in

eq. (87). This is precisely the result one would get by putting the source term 2JL∆P δ
′(z) ∼=

JL(δ(z + ∆P ) − δ(z − ∆P )) into the diffusion equation, as was done in ref. [8]. We believe

that the present derivation clarifies their procedure.

For the thermalization distance ∆P , we take the estimate made in ref. [8] of the distance

over which scatterings in the plasma will randomize the velocities of the particles in the

injected flux (this might underestimate the injection distance for the low momentum states,

but we nevertheless use it as a conservative estimate):

∆P = 3Dvi, (91)

where vi is the average velocity of the particles in JL. Following the logic of section 5.1, this

velocity is the ratio of the flux, eq. (59), to the same expression except without the factor

of kz/E1 in the integrand. For the large-momentum region of phase space discussed in the

section 5.1 the result is

vi =

[
rL(a)

rS(2a)

] [
m

EL
1 + T (1 + eβEL

1 ) ln(1 + e−βEL
1 )

]
, (92)

where a = w/m and the other symbols are defined in eq. (60) and (66). For the tau lepton,

this gives vi = 2.4m/T , while for the b quark it is vi = 1.3m/T . For particles injected

at small momentum, the direction is nearly perpendicular to the wall and the dispersion

relation (49) implies

vi = 1/3. (93)
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6 The Baryon Asymmetry

With the preceding results it is a simple matter to compute the baryon asymmetry, because

the rate of baryon violation due to sphalerons in terms of the total left-handed quark and

lepton densities is

ṅB = −9(Γ/T 3)(nqL
+ nlL). (94)

This can easily be derived from the Boltzmann equation in the following way. Define forward

(backward) sphaleron interactions as those which change baryon number by +3 (−3) units.

Half of the time the sphaleron interaction will involve one member of a given fermion doublet

and half the time the other; if we ignore the distinction between the two at first and then

average over different doublet members at the end we will get the right answer. Since baryon

number is violated by 3 units, the Boltzmann equation is

ṅB = 3
∑∫

dΠ (f1 · · · fn(1 − f1̄) · · · (1 − fn̄) − f1̄ · · · fn̄(1 − f1) · · · (1 − fn)) (95)

where the sum is over all possible channels, the integration measure includes the squared

matrix element and the delta function for 4-momentum conservation, and the f ’s are Fermi-

Dirac distribution functions for n (n̄) initial (final) states. The Pauli blocking factors can be

written as

1 − fi = eβ(Ei−µi)fi
∼= eβEi(1 − βµi) (96)

so that (95) becomes

ṅB = 3β
∑

(µ1̄ + · · ·+ µn̄ − µ1 − · · · − µn)
∫
dΠf1 · · · fnf1̄ · · · fn̄e

β(E1+···+En), (97)

using energy conservation to equate E1 + · · · + En to E1̄ + · · · + En̄. The combination of

chemical potentials appearing here is always the same one no matter what channel, once we

average over the members of the doublets: it is half the sum of potentials for 18 left-handed

quarks and 6 left-handed leptons associated with the sphaleron. The sum over channels of

the integral is by definition the rate of sphaleron interactions per unit time and volume.

Using the fact that density is related to the chemical potential by n = µT 2/6 for a single

lepton flavor and n = µT 2/2 for a single quark flavor (because of the three colors), we arrive

at (94) after summing over generations and averaging over members of doublets.
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We have shown that nq ≪ nl in front of the wall, so that only the lepton contribution

need be considered. The interaction rate per unit volume Γ is κsph(αWT )4 in the symmetric

phase. To find the density of baryons produced by sphalerons at a given position z, one

integrates (94) from t = −∞ until the time when the bubble wall passes the position z,

when the sphaleron interactions effectively turn off. The integral over time can be rewritten

as an integral over distance in front of the wall by a change of variables:

nB = − 9Γ

T 3v

∫ ∞

0
dz nlL(z). (98)

A convenient measure of the baryon asymmetry is the ratio of nB to the entropy density of

the universe, s = 2π2g∗T
3/45, with g∗ = 110.75 degrees of freedom at the electroweak phase

transition. Then, assembling our previous results, we have that

nB

s
=

1215α4
W κsph

π2g∗T 2
c v

2
DlFl(viJL + 1

3
J s.m.

L ), (99)

recalling that the expressions for the fluxes were given in eqs. (59) and (67). Putting in the

numbers pertinent for the tau lepton contribution Dl = 110/T , Fl = 1.85, A(0.06) = e−3.2,

w(0.06) = 2.6m, rS(0.12) = 12.4, ω0/T = 0.17 and m(Tc)/Tc = 0.01), and using the recent

result κsph = 1.1 corresponding to the classical sphaleron transition rate [39], we obtain

nB

s
= 1 × 10−12 ∆θ

v
(100)

Given the range allowed by primordial nucleosynthesis: nB/s = 1.4 − 3.8 × 10−11 [42], eq.

(100) translates to a constraint for the parameters ∆θ and v:

15 <∼
∆θ

v
<∼ 40. (101)

Although recent estimates [40, 41] predict rather small terminal velocities corresponding to

deflagrating bubbles, v ∼ 0.3, this is still too large to satisfy eq. (100), even if ∆θ = 1.

However it is possible to imagine means by which the final asymmetry could be boosted to

the desired level, as we now discuss.
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Figure 6. The enhancement of the generated baryon asymmetry as a function of the effective

fermion mass parameter ξ = m∆wall (see eq. (48)). The curve is normalized to unity at the

value ξ = 0.12 which we take to correspond to the tau lepton. As in figure 3, the curves are

labeled by the corresponding value of −κ in GeV2.

A very promising possibility of enhancement is provided by a dynamical slowing down

of the bubble walls due to the heating of the plasma in the unbroken phase by the shock

waves of the neighbouring bubbles [40]. This deceleration always occurs for deflagration

bubbles, and while it has a strong quantitative dependence on the dynamical details of the

transition, it is qualitatively easy to understand: the heating of the unbroken phase reduces

the difference of the free energies between the interior and exterior regions of a bubble, which

is the driving force of the expansion, so the walls slow down when eventually hit by the shock

waves of the neighbouring bubbles. Then, given that the wall velocity goes down by a large

factor when, say, half of the universe is still in the unbroken phase, and knowing that the

baryon production rate goes like 1/v, it becomes evident that essentially all baryons might

have been produced in this later, decelerated phase of the transition. Ref. [40] suggests the
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possibility of a very large deceleration, v → v/100, which would easily make the present

mechanism a viable candidate for baryogenesis. We stress however the sensitive dependence

of this effect on the dynamics of the transition and that we have not attempted to calculate

its size in the present model.

Another way of increasing the above result was suggested in ref. [8], namely to increase the

ratio m/Tc during the phase transition beyond its value in our model, by invoking possible

complications in the evolution of the two Higgs fields: if the one that couples to the tau

lepton has a larger VEV relative to the other Higgs field during the phase transition than at

zero temperature, then the power-law dependence on m/Tc would boost the production of

baryons. This corresponds to taking a larger value of the dimensionless parameter ξ = m∆wall

than that (ξ = 0.12) which our model gave. We have explored the dependence of the baryon

asymmetry on ξ and summarized the results in figure 6. Although the enhancement depends

on the details of the bubble wall profile, which in turn depends on the Higgs potential

parameter κ, for most values of κ the optimal fermion mass occurs in the vicinity of ξ = 1,

corresponding to one inverse bubble wall width. Thus the mass of the tau lepton is not very

far from being the ideal size given the width of the wall in our model.

Figure 6 shows that one can get somewhat larger values if κ is tuned to particular values,

as the case of κ = −25000 GeV2 illustrates. It is possible to understand this enhancement

qualitatively [22]. In the classical limit of the fermion scattering off the wall, the gradient of

the θ-field acts like an effective potential to be added on top of the usual wall potential, with

opposite sign for particles and antiparticles. Therefore if θ is mainly changing well inside the

broken phase, some particles whose momentum would otherwise get them over the barrier

effectively see a ‘bump’ that causes them to be reflected. At the same time antiparticles with

the same momentum see no such bump and are transmitted. Although quantum mechanics

will reduce this effect because of tunneling, one nevertheless expects to see an enhancement

in the difference ∆R of the reflection probabilities. Comparison with figures 1 and 3 shows

that, in contrast to the other cases, where ∂θ/∂z is concentrated toward the front of the

wall, in the case of κ = −25000 GeV2, θ(x) is indeed changing primarily within the broken

phase.
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7 Results and Conclusions

We have attempted to make a quantitatively accurate estimate of the baryon asymmetry

in the charge transport mechanism of electroweak baryogenesis, using a somewhat realistic

two-Higgs doublet model. By assuming reasonable values of parameters, we find that the tau

lepton is by far the most important particle species contributing to the baryon asymmetry

through its CP-violating reflections from the domain walls that form during the phase transi-

tion, and that the resulting baryon asymmetry can be marginally big enough for consistency

with primordial nucleosynthesis.

In this section we will remind the reader of our assumptions and try to indicate how our

conclusions depend upon them.

1) Concerning the phase transition, we tuned the parameters of the Higgs potential to

give tan β = 1 for the ratio of the two Higgs field VEV’s, because we chose not to deal

with a two-stage phase transition, in which one field gets a VEV before the other does. In

order for the fermionic loop corrections not to spoil this tuning, that is, to keep also the

temperature-dependent Higgs masses equal, it was necessary to couple heavy fermions with

equal strength to both Higgs fields. However, if we let all fermions couple to each Higgs field

with exactly the same strength, then there would be no CP-violation in the fermion mass,

because the two fields would give contributions with canceling imaginary parts. In this paper

we assumed equal couplings of the top quark to the Higgs fields in the effective action, yet

computed the quark reflection as if they only coupled to one of the fields. It should be clear

that our conclusion about the smallness of the asymmetry arising from quark reflections

does not depend on these details. So in retrospect we see that we can choose to couple

quarks symmetrically to the Higgs bosons yet have the leptons coupling only to Φ2. In such

a model the transition truly proceeds simultaneously in both Higgs fields, and our treatment

is completely self-consistent. Moreover we believe that our results are representative also

of the two stage phase transitions, because as long as one keeps ρc/Tc = 1 to satisfy the

sphaleron washout constraint, the baryon asymmetry should not change much since the

ratio to which it is most sensitive, m(Tc)/Tc, remains constant.

2) The problem of sphaleron washout also prompted us to assume a small value of the
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mass of the lightest neutral Higgs particle, with a definite corresponding value of the effective

quartic coupling λeff = 0.12. The ratio ρc/Tc decreases with increasing λeff , making the

sphaleron interactions not sufficiently suppressed in the broken phase inside the bubbles.

But this ratio also depends on the cubic term in the high-temperature Higgs potential. We

had to assume a larger value of the cubic coupling than predicted within our model in

order to avoid the washout problem. The situation is ameliorated somewhat by recent work

[43] which finds a suppression of the sphaleron rate inside the bubbles due to loop effects.

Moreover, there is a large number of cubic-like contributions coming from the scalar fields,

which we omitted because of technical reasons, that might tend to increase the effective cubic

term in this model. Finally one might expect that nonperturbative effects in the symmetric

phase play the same role in the two-doublet model as has been recently found in the standard

model [20], increasing the amount of supercooling and hence effectively increasing the ratio

ρc/Tc. This phenomenon should also be roughly mimicked by a larger effective cubic term.

3) We treated the CP-violating phase θ(x) as a perturbation which had no back-reaction

on the VEV ρ(x) of the Higgs fields. Since there are no strong constraints on this phase, and

none at all if it arises spontaneouly at finite temperature, this assumption was not necessary

and served only as a convenience. It is possible that a complete solution of the coupled

equations for ρ(x) and θ(x) would give different results, but if the κ-dependent changes of

the shape of these solutions give any indication (figure 3), we do not expect much sensitivity

except for fermion masses significantly larger than the inverse wall thickness.

If the tau lepton was heavier by a factor of 5, the baryon production in the present

mechanism would be increased by a factor of 15−80, making it a viable mechanism of

baryogenesis. One obviously cannot change this fact of nature, but we can imagine ways

of making mτ effectively heavier during the phase transition. One possibility would be to

actually find a model that displays the behavior suggested by ref. [8] in which the VEV’s of

the two Higgs fields obey ρ1(Tc)/ρ2(Tc) > ρ1(0)/ρ2(0). One should in this case also take into

account other effects of a two-stage phase transition on baryogenesis. A second possibility we

discussed is that at the final stage of the phase transition the bubble walls are slowed down

due to the heating of the unbroken phase by the shock waves of the neighbouring bubbles,

which could lead to a large enhancement of the baryon production. A third possibility would
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be to demonstrate in a more convincing fashion that the cubic term in the effective potential

could be increased even more than we assumed above, so that m(Tc)/Tc would be increased.

This would also be welcome from the point of view of insuring that sphaleron interactions

in the broken phase are too slow to destroy the baryon asymmetry that nature may have so

intricately produced at the electroweak phase transition.
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A Analytic solution to the linearized θ-equation

In this appendix we derive an analytical solution to the linearized equation of motion for

θ(x) = θ(g(x)), eq. (28). Recall that g(x) describes the modulus of the Higgs field at the

bubble wall, eq. (21).

4g2(1 − g)2d2θ

dg2
+ 4g(1 − g)(3 − 4g)

dθ

dg
+ (B + Cg2)θ = −D (102)

The two homogeneous solutions to this equation are given by

θ+(g) =
1

g
g−α (1 − g)+β

2F1(−α + β +
1

2
+ γ,−α + β +

1

2
− γ; 1 + 2β; 1 − g),

θ−(g) =
1

g
g+α (1 − g)−β

2F1(+α− β +
1

2
+ γ,+α− β +

1

2
− γ; 1 + 2α; g) (103)

where the 2F1 are hypergeometric functions characterized by the parameters

α =
√

1 −B/4

β =
1

2

√
−B − C

γ =
1

2

√
9 − C.

The homogeneous solutions θ± diverge for x → ±∞. But our boundary conditions require

finiteness in these limits. We therefore have to set the coefficients of the homogeneous

solutions (103) identically to zero and are left with the inhomogeneous solution.
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The inhomogeneous solution can be constructed by use of the Greens function of equation

(102). We find

θ(x) = −1

4
DW

[
θ+(g(x))

∫ g(x)

0
dg′

g′

1 − g′
θ−(g′) + θ−(g(x))

∫ 1

g(x)
dg′

g′

1 − g′
θ+(g′)

]
(104)

where the Wronskian W is given by

W =
Γ(α + β + 1

2
+ γ)Γ(α + β + 1

2
− γ)

Γ(1 + 2α)Γ(1 + 2β)
. (105)

Although we cannot further simplify (104), we can find an approximation to (104) in the

thick wall limit. In this adiabatic case one would expect that the kinetic term is irrelevant

throughout. We then simply ignore the kinetic term in (102) and find the solution for

δV/δθ(x) = 0.

θadiab(x) =
−D

B + Cg2
. (106)

This solution can be verified using (104).

B Finite temperature Dirac equation

In this appendix we outline the derivation of the Dirac equation for the scattering of a

fermionic excitation off a bubble wall including the effects of the thermal background. While

most of the equations shown below have been derived elsewhere, we present them here for

completeness and in order to be able to discuss their implications for the present physical

application.

The basic computational task is to compute the thermal self-energy corrections to the

fermion propagator. In the unbroken phase chirality is a good quantum number, so that

the self-energy separates in the chiral representation. Going directly to the rest frame of the

plasma, one may show that [25]

ΣX =
{
(aX(k, ω)ω + bX(k, ω))γ0 − aX(k, ω)k · γ

}
PX , (107)

where X = L,R refers to the chirality, PX is the corresponding chiral projector, k and ω

are the three-momentum and the energy of the particle in the plasma rest frame and the
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functions a and b have the well-known high temperature (k, ω ≪ T ) limit [25],

aX(k, ω) =
ω2

X

k2

(
1 − ω

2k
ln(

ω + k

ω − k
)

)

bX(k, ω) =
ω2

X

k

(
ω

k
− ω2 − k2

2k2
ln(

ω + k

ω − k
)

)
. (108)

In the approximation that the masses of the particles within the loops can be neglected,

the above expressions are valid also in the broken phase (and within the wall). Then the

effective Dirac equation, at the one loop level becomes

(
(1 − aL)ω − bL + (1 − aL)σ · k −m

−m∗ (1 − aR)ω − bR − (1 − aR)σ · k

)(
L
R

)
= 0. (109)

Because of the nonlinear dependence of the functions a and b on the energy and momentum,

this is a highly nonlocal equation, which is a reflection of its inherent multiparticle nature.

In particular the nonlinearity in energy makes it impossible to give it an exact interpretation

in terms of effective single particle states, except in the small and large momentum limits,

where the self-energy can be approximately linearized and the (re)quantization procedure

may be completed.

In order to proceed with the reflection computation however, one needs to find at least

an approximate interpretation of (109) in terms of single particle states. The remedy is of

course well known; one defines the effective quasiparticle states as the collective excitations

corresponding to the poles of the 1-loop propagator, or in other words, to the peaks in the

phase space density in energy. One should however bear in mind that such an interpretation

does not give a complete description of the system and in some cases pushing the picture

too far can lead to ambiguities.

The poles of the propagator correspond to the zeros of the determinant of the matrix

appearing in (109). In the symmetric phase the resulting dispersion relations take the par-

ticularly simple form

gp,h
X (ω, k) ≡ (1 − aX)(ω ∓ k) − bX = 0, (110)

where the two signs correspond to two different branches of solutions: the one with the minus

sign can be viewed as a generalization of the usual particle excitation to finite temperatures.
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The one with the plus sign on the other hand represents a new solution that has no counter-

part at zero temperature wave function renormalization. Indeed by constructing a 1-particle

propagator [27, 26]. The appearance of this new ’hole’ excitation apparently leads to un-

physical doubling of the number of degrees of freedom (as measured by the volume of phase

space), which calls for and is corrected by finite-temperature wave function renormalization.

Indeed by constructing a 1-particle propagator from the quasiparticle states and comparing

to the full propagator, one finds that the correctly normalized quasiparticle wave functions

differ from the vacuum wave functions by the momentum-dependent normalization factor

(Zp,h
X (k))1/2, where [25, 27, 44]

Zp,h
X (k)−1 =

(
dgp,h

X

dω

)

ω=ωp,h(k)

=

[
1 + aX + (1 − aX)

ω ∓ k

ω ± k

]

ω=ωp,h(k)

. (111)

One can readily work out the limiting values of Z: in the small momentum limit

Zp,h
X (k) ≃ 1

2
± k

3ωX
(112)

and in the large momentum limit (where also ω ≃ k)

Zp
X(k) ≃ 1 − ω2

X

k2
ln
ωX

k
Zh

X(k) ≃ e−2k2/ω2
X
−1. (113)

Thus, in the small momentum limit both particle and hole excitations have equal weight,

which is half of the zero temperature value. Moreover, holes are only present at momenta

k <∼ ωX , above which their effective number density (given by Z(k)f(ω(k)) falls off expo-

nentially. Therefore one does not need to account for holes in the high-momentum region.

The small momentum limit dispersion relations (49) and the Dirac equation (51) are

easily derived from (109) and (110) after finding the small-momentum limits of the functions

a and b:

aX =
ω2

X

3ω2
+ O(k2); bX = 2a+ O(k2). (114)

The factor of 1/2 coming from Z±
X(0) for both particles and holes of both chiralities, which

compensates the doubling of the number of excitations due to the appearance of the hole

states, was included in our equation (63). This factor was overlooked in the treatments of

the quasiparticle scatterings in the standard model in references [26, 29].
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In the large momentum limit the hole excitations vanish, since their wave function renor-

malization factor goes exponentially to zero. Moreover, since both a and b go to zero at large

k,

aX ≃ ω2
X

k2
ln

k

ωX
; bX ≃ ω2

X

k
, (115)

one might expect that the Dirac equation trivially approaches the vacuum equation. The

situation is more complicated however, because we are interested in phenomena that depend

on small differences between energy and momentum. In fact one can show that the a-factor

may safely be neglected, but that the remaining equation has other terms that are of the

same order as the b-term even at high momentum. Nevertheless, one would still expect that

the vacuum equation gives a reasonable approximation for the reflection of high-momentum

particles, since the b-term affects both symmetric and broken phases equally.

Let us finally point out that in the intermediate momentum region k ∼ ωX the wave

function normalization factors do not add up to 1; instead their sum can be as low as about

0.8 [27]. This signals the breakdown of the single particle interpretation, which can lead to

inconsistencies. For instance, replacing the limiting normalization factors 1
2

by corresponding

momentum-dependent Z’s leads to a small nonvanishing flux in the intermediate momentum

region, even when the wall is not moving. However, this flux is much smaller than, and clearly

caused by, the inherent error in the total flux due to the abovementioned fact that in this

region the effective 1-particle states do not give a faithful representation of the phase space.
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