1,333 research outputs found

    Gravitational couplings of charged leptons in a medium

    Get PDF
    We calculate the leading order matter-induced corrections to the gravitational interactions of charged leptons and their antiparticles in a medium that contains electrons but not the other charged leptons, such as normal matter. The gravitational coupling, which is universal at the tree level, is found to be flavor-dependent, and also different for the corresponding antiparticles, when the corrections of O(α)O(\alpha) are taken into account. General expressions are obtained for the matter-induced corrections to the gravitational mass in a generic matter background, and explicit formulas for those corrections are given in terms of the macroscopic parameters of the medium for particular conditions of the background gases.Comment: Latex, axodraw, 39 pages. Added a few stylistic corrections and clarifying statements in the treatment of the photon tadpole diagra

    Enhanced surface diffusion through termination conversion during epitaxial SrRuO3 growth

    Get PDF
    During the initial growth of the ferromagnetic oxide SrRuO3 on TiO2-terminated SrTiO3, we observe a self-organized conversion of the terminating atomic layer from RuO2 to SrO. This conversion induces an abrupt change in growth mode from layer by layer to growth by step advancement, indicating a large enhancement of the surface diffusivity. This growth mode enables the growth of single-crystalline and single-domain thin films. Both conversion and the resulting growth mode enable the control of the interface properties in heteroepitaxial multilayer structures on an atomic level

    Growth mode transition from layer-by-layer to step-flow during the growth of heteroepitaxial SrRu)3 on (001) SrTiO3

    Get PDF
    We have observed the growth mode transition from two-dimensional (2D) layer-by-layer to step-flow in the earliest stage growth of heteroepitaxial SrRuO3 thin films on TiO2-terminated (001) SrTiO3 substrates by in situ high pressure reflective high energy electron diffraction (RHEED) and atomic-force microscopy. There is no RHEED intensity recovery after each laser pulse in the first oscillation when the growth mode is 2D layer-by-layer. On the other hand, it is getting more pronounced in the second oscillation, and finally reaches a dynamic steady state in which the growth mode is completely changed into the step-flow mode. The origin of the growth mode transition can be attributed to a change in the mobility of adatoms and switching the surface termination layer from the substrate to the film. SrRuO3 thin films with an atomically smooth surface grown by atomic layer control can be used in oxide multilayered heterostructure devices

    Multiscale Discriminant Saliency for Visual Attention

    Full text link
    The bottom-up saliency, an early stage of humans' visual attention, can be considered as a binary classification problem between center and surround classes. Discriminant power of features for the classification is measured as mutual information between features and two classes distribution. The estimated discrepancy of two feature classes very much depends on considered scale levels; then, multi-scale structure and discriminant power are integrated by employing discrete wavelet features and Hidden markov tree (HMT). With wavelet coefficients and Hidden Markov Tree parameters, quad-tree like label structures are constructed and utilized in maximum a posterior probability (MAP) of hidden class variables at corresponding dyadic sub-squares. Then, saliency value for each dyadic square at each scale level is computed with discriminant power principle and the MAP. Finally, across multiple scales is integrated the final saliency map by an information maximization rule. Both standard quantitative tools such as NSS, LCC, AUC and qualitative assessments are used for evaluating the proposed multiscale discriminant saliency method (MDIS) against the well-know information-based saliency method AIM on its Bruce Database wity eye-tracking data. Simulation results are presented and analyzed to verify the validity of MDIS as well as point out its disadvantages for further research direction.Comment: 16 pages, ICCSA 2013 - BIOCA sessio

    The fermi arc and fermi pocket in cuprates in a short-range diagonal stripe phase

    Full text link
    In this paper we studied the fermi arc and the fermi pocket in cuprates in a short-range diagonal stripe phase with wave vectors (7π/8,7π/8)(7\pi/8, 7\pi/8), which reproduce with a high accuracy the positions and sizes of the fermi arc and fermi pocket and the superstructure in cuprates observed by Meng et al\cite{Meng}. The low-energy spectral function indicates that the fermi pocket results from the main band and the shadow band at the fermi energy. Above the fermi energy the shadow band gradually departs away from the main band, leaving a fermi arc. Thus we conclude that the fermi arc and fermi pocket can be fully attributed to the stripe phase but has nothing to do with pairing. Incorporating a d-wave pairing potential in the stripe phase the spectral weight in the antinodal region is removed, leaving a clean fermi pocket in the nodal region.Comment: 5 pages, 6 figure

    Generalised quantum weakest preconditions

    Full text link
    Generalisation of the quantum weakest precondition result of D'Hondt and Panangaden is presented. In particular the most general notion of quantum predicate as positive operator valued measure (POVM) is introduced. The previously known quantum weakest precondition result has been extended to cover the case of POVM playing the role of a quantum predicate. Additionally, our result is valid in infinite dimension case and also holds for a quantum programs defined as a positive but not necessary completely positive transformations of a quantum states.Comment: 7 pages, no figures, added references, changed conten

    Role of Network Topology in the Synchronization of Power Systems

    Get PDF
    We study synchronization dynamics in networks of coupled oscillators with bimodal distribution of natural frequencies. This setup can be interpreted as a simple model of frequency synchronization dynamics among generators and loads working in a power network. We derive the minimum coupling strength required to ensure global frequency synchronization. This threshold value can be efficiently found by solving a binary optimization problem, even for large networks. In order to validate our procedure, we compare its results with numerical simulations on a realistic network describing the European interconnected high-voltage electricity system, finding a very good agreement. Our synchronization threshold can be used to test the stability of frequency synchronization to link removals. As the threshold value changes only in very few cases when aplied to the European realistic network, we conclude that network is resilient in this regard. Since the threshold calculation depends on the local connectivity, it can also be used to identify critical network partitions acting as synchronization bottlenecks. In our stability experiments we observe that when a link removal triggers a change in the critical partition, its limits tend to converge to national borders. This phenomenon, which can have important consequences to synchronization dynamics in case of cascading failure, signals the influence of the uncomplete topological integration of national power grids at the European scale.Comment: The final publication is available at http://www.epj.org (see http://www.springerlink.com/content/l22k574x25u6q61m/

    Coupled-channel effective field theory and proton-7^7Li scattering

    Full text link
    We apply the renormalisation group (RG) to analyse scattering by short-range forces in systems with coupled channels. For two S-wave channels, we find three fixed points, corresponding to systems with zero, one or two bound or virtual states at threshold. We use the RG to determine the power countings for the resulting effective field theories. In the case of a single low-energy state, the resulting theory takes the form of an effective-range expansion in the strongly interacting channel. We also extend the analysis to include the effects of the Coulomb interaction between charged particles. The approach is then applied to the coupled p+7p+{^7}Li and n+7n+{^7}Be channels which couple to a JP=2J^P=2^- state of 8^8Be very close to the n+7n+{^7}Be threshold. At next-to-leading order, we are able to get a good description of the p+7p+{^7}Li phase shift and the 7{^7}Be(n,p)7{^7}Li cross section using four parameters. Fits at one order higher are similarly good but the available data are not sufficient to determine all five parameters uniquely.Comment: 22 pages, 2 figures, RevTeX4, typos corrected, accepted for publication in European Physical Journal

    Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy

    Full text link
    We review HB stars in a broad astrophysical context, including both variable and non-variable stars. A reassessment of the Oosterhoff dichotomy is presented, which provides unprecedented detail regarding its origin and systematics. We show that the Oosterhoff dichotomy and the distribution of globular clusters (GCs) in the HB morphology-metallicity plane both exclude, with high statistical significance, the possibility that the Galactic halo may have formed from the accretion of dwarf galaxies resembling present-day Milky Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the second-parameter problem is presented. A technique is proposed to estimate the HB types of extragalactic GCs on the basis of integrated far-UV photometry. The relationship between the absolute V magnitude of the HB at the RR Lyrae level and metallicity, as obtained on the basis of trigonometric parallax measurements for the star RR Lyrae, is also revisited, giving a distance modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are studied. Finally, the conductive opacities used in evolutionary calculations of low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and Space Scienc
    corecore