3,771 research outputs found

    Casimir Energy and Entropy between perfect metal Spheres

    Full text link
    We calculate the Casimir energy and entropy for two perfect metal spheres in the large and short separation limit. We obtain nonmonotonic behavior of the Helmholtz free energy with separation and temperature, leading to parameter ranges with negative entropy, and also nonmonotonic behavior of the entropy with temperature and with the separation between the spheres. The appearance of this anomalous behavior of the entropy is discussed as well as its thermodynamic consequences.Comment: 10 pages and 8 figures. Accepted for publication in the Proceedings of the tenth conference on Quantum Field Theory under the influence of external conditions - QFEXT'1

    Self-Diffusion of a Polymer Chain in a Melt

    Full text link
    Self-diffusion of a polymer chain in a melt is studied by Monte Carlo simulations of the bond fluctuation model, where only the excluded volume interaction is taken into account. Polymer chains, each of which consists of NN segments, are located on an L×L×LL \times L \times L simple cubic lattice under periodic boundary conditions, where each segment occupies 2×2×22 \times 2 \times 2 unit cells. The results for N=32,48,64,96,128,192,256,384N=32, 48, 64, 96, 128, 192, 256, 384 and 512 at the volume fraction ϕ0.5\phi \simeq 0.5 are reported, where L=128L = 128 for N256N \leq 256 and L=192 for N384N \geq 384. The NN-dependence of the self-diffusion constant DD is examined. Here, DD is estimated from the mean square displacements of the center of mass of a single polymer chain at the times larger than the longest relaxation time. From the data for N=256N = 256, 384 and 512, the apparent exponent xdx_{\rm d}, which describes the apparent power law dependence of DD on NN as DNxdD \propto N^{- x_{\rm d}}, is estimated as xd2.4x_{\rm d} \simeq 2.4. The ratio Dτ/D \tau / seems to be a constant for N=192,256,384N = 192, 256, 384 and 512, where τ\tau and denote the longest relaxation time and the mean square end-to-end distance, respectively.Comment: 4 pages, 3 figures, submitted to J. Phys. Soc. Jp

    Preprocess dependence of optical properties of ensembles and single siphonaxanthin-containing major antenna from the marine green alga Codium fragile

    Get PDF
    The siphonaxanthin-siphonein-Chl-a/b-protein (SCP) is the light-harvesting complex of the marine alga Codium fragile. Its structure resembles that of the major light-harvesting complexes of higher plants, LHC II, yet it features a reversed Chl a:Chl b ratio and it accommodates other variants of carotenoids. We have recorded the fluorescence emission spectra and fluorescence lifetimes from ensembles and single SCP complexes for three different scenarios of handling the samples. While the data obtained from ensembles of SCP complexes yield equivalent results, those obtained from single SCP complexes featured significant differences as a function of the sample history. We ascribe this discrepancy to the different excitation intensities that have been used for ensemble and single complex spectroscopy, and conclude that the SCP complexes undergo an aging process during storage. This process is manifested as a lowering of energetic barriers within the protein, enabling thermal activation of conformational changes at room temperature. This in turn leads to the preferential population of a red-shifted state that features a significant decrease of the fluorescence lifetime

    Integrable atomtronic interferometry

    Full text link
    High sensitivity quantum interferometry requires more than just access to entangled states. It is achieved through deep understanding of quantum correlations in a system. Integrable models offer the framework to develop this understanding. We communicate the design of interferometric protocols for an integrable model that describes the interaction of bosons in a four-site configuration. Analytic formulae for the quantum dynamics of certain observables are computed. These expose the system's functionality as both an interferometric identifier, and producer, of NOON states. Being equivalent to a controlled-phase gate acting on two hybrid qudits, this system also highlights an equivalence between Heisenberg-limited interferometry and quantum information. These results are expected to open new avenues for integrability-enhanced atomtronic technologies.Comment: 6 pages, 4 figures, 1 tabl
    corecore