522 research outputs found

    Reflection and Transmission in a Neutron-Spin Test of the Quantum Zeno Effect

    Get PDF
    The dynamics of a quantum system undergoing frequent "measurements", leading to the so-called quantum Zeno effect, is examined on the basis of a neutron-spin experiment recently proposed for its demonstration. When the spatial degrees of freedom are duely taken into account, neutron-reflection effects become very important and may lead to an evolution which is totally different from the ideal case.Comment: 26 pages, 6 figure

    Dynamics of Quantum Collapse in Energy Measurements

    Full text link
    The influence of continuous measurements of energy with a finite accuracy is studied in various quantum systems through a restriction of the Feynman path-integrals around the measurement result. The method, which is equivalent to consider an effective Schr\"odinger equation with a non-Hermitian Hamiltonian, allows one to study the dynamics of the wavefunction collapse. A numerical algorithm for solving the effective Schr\"odinger equation is developed and checked in the case of a harmonic oscillator. The situations, of physical interest, of a two-level system and of a metastable quantum-well are then discussed. In the first case the Zeno inhibition observed in quantum optics experiments is recovered and extended to nonresonant transitions, in the second one we propose to observe inhibition of spontaneous decay in mesoscopic heterostructures. In all the considered examples the effect of the continuous measurement of energy is a freezing of the evolution of the system proportional to the accuracy of the measurement itself.Comment: 20 pages with figures, compressed and uuencoded ps fil

    Zeno and anti-Zeno effects for photon polarization dephasing

    Get PDF
    We discuss a simple, experimentally feasible scheme, which elucidates the principles of controlling ("engineering") the reservoir spectrum and the spectral broadening incurred by repeated measurements. This control can yield either the inhibition (Zeno effect) or the acceleration (anti-Zeno effect) of the quasi-exponential decay of the observed state by means of frequent measurements. In the discussed scheme, a photon is bouncing back and forth between two perfect mirrors, each time passing a polarization rotator. The horizontal and vertical polarizations can be viewed as analogs of an excited and a ground state of a two level system (TLS). A polarization beam splitter and an absorber for the vertically polarized photon are inserted between the mirrors, and effect measurements of the polarization. The polarization angle acquired in the electrooptic polarization rotator can fluctuate randomly, e.g., via noisy modulation. In the absence of an absorber the polarization randomization corresponds to TLS decay into an infinite-temperature reservoir. The non-Markovian nature of the decay stems from the many round-trips required for the randomization. We consider the influence of the polarization measurements by the absorber on this non-Markovian decay, and develop a theory of the Zeno and anti-Zeno effects in this system.Comment: 11 pages, 4 figure

    Quantum anti-Zeno effect without wave function reduction

    Full text link
    We study the measurement-induced enhancement of the spontaneous decay (called quantum anti-Zeno effect) for a two-level subsystem, where measurements are treated as couplings between the excited state and an auxiliary state rather than the von Neumann's wave function reduction. The photon radiated in a fast decay of the atom, from the auxiliary state to the excited state, triggers a quasi-measurement, as opposed to a projection measurement. Our use of the term "quasi-measurement" refers to a "coupling-based measurement". Such frequent quasi-measurements result in an exponential decay of the survival probability of atomic initial state with a photon emission following each quasi-measurement. Our calculations show that the effective decay rate is of the same form as the one based on projection measurements. What is more important, the survival probability of the atomic initial state which is obtained by tracing over all the photon states is equivalent to the survival probability of the atomic initial state with a photon emission following each quasi-measurement to the order under consideration. That is because the contributions from those states with photon number less than the number of quasi-measurements originate from higher-order processes.Comment: 7 pages, 3 figure

    Regional respiratory time constants during lung recruitment in high-frequency oscillatory ventilated preterm infants

    Get PDF
    To assess the regional respiratory time constants of lung volume changes during stepwise lung recruitment before and after surfactant treatment in high-frequency oscillatory ventilated preterm infants. A stepwise oxygenation-guided recruitment procedure was performed before and after surfactant treatment in high-frequency oscillatory ventilated preterm infants. Electrical impedance tomography was used to continuously record changes in lung volume during the recruitment maneuver. Time constants were determined for all incremental and decremental pressure steps, using one-phase exponential decay curve fitting. Data were analyzed for the whole cross section of the chest and the ventral and dorsal lung regions separately. Before surfactant treatment, the time constants of the incremental pressure steps were significantly longer (median 27.3 s) than those in the decremental steps (16.1 s). Regional analysis showed only small differences between the ventral and dorsal lung regions. Following surfactant treatment, the time constants during decremental pressure steps almost tripled to 44.3 s. Furthermore, the time constants became significantly (p <0.01) longer in the dorsal (61.2 s) than into the ventral (40.3 s) lung region. Lung volume stabilization during stepwise oxygenation-guided lung recruitment in high-frequency oscillatory ventilated preterm infants with respiratory distress syndrome is usually completed within 5 min and is dependent on the position of ventilation on the pressure volume curve, the surfactant status, and the region of interest of the lun

    A New Optimized Quasihelically SymmetricStellarator

    Full text link
    A new optimized quasihelically symmetric configuration is described that has the desir-able properties of improved energetic particle confinement, reduced turbulent transportby 3D shaping, and non-resonant divertor capabilities. The configuration presented in thispaper is explicitly optimized for quasihelical symmetry, energetic particle confinement,neoclassical confinement, and stability near the axis. Post optimization, the configurationwas evaluated for its performance with regard to energetic particle transport, idealmagnetohydrodynamic (MHD) stability at various values of plasma pressure, and iontemperature gradient instability induced turbulent transport. The effect of discrete coilson various confinement figures of merit, including energetic particle confinement, aredetermined by generating single-filament coils for the configuration. Preliminary divertoranalysis shows that coils can be created that do not interfere with expansion of thevessel volume near the regions of outgoing heat flux, thus demonstrating the possibilityof operating a non-resonant divertor.Comment: 13 figures, 3 table

    Projection Postulate and Atomic Quantum Zeno Effect

    Get PDF
    The projection postulate has been used to predict a slow-down of the time evolution of the state of a system under rapidly repeated measurements, and ultimately a freezing of the state. To test this so-called quantum Zeno effect an experiment was performed by Itano et al. (Phys. Rev. A 41, 2295 (1990)) in which an atomic-level measurement was realized by means of a short laser pulse. The relevance of the results has given rise to controversies in the literature. In particular the projection postulate and its applicability in this experiment have been cast into doubt. In this paper we show analytically that for a wide range of parameters such a short laser pulse acts as an effective level measurement to which the usual projection postulate applies with high accuracy. The corrections to the ideal reductions and their accumulation over n pulses are calculated. Our conclusion is that the projection postulate is an excellent pragmatic tool for a quick and simple understanding of the slow-down of time evolution in experiments of this type. However, corrections have to be included, and an actual freezing does not seem possible because of the finite duration of measurements.Comment: 25 pages, LaTeX, no figures; to appear in Phys. Rev.
    • 

    corecore