251 research outputs found
Effect of Charge Fluctuations on the Persistent Current through a Quantum Dot
We study coherent charge transfer between an Aharonov-Bohm ring and a
side-attached quantum dot. The charge fluctuation between the two
sub-structures is shown to give rise to algebraic suppression of the persistent
current circulating the ring as the size of the ring becomes relatively large.
The charge fluctuation at resonance provides transition between the diamagnetic
and the paramagnetic states.
Universal scaling, crossover behavior of the persistent current from a
continuous to a discrete energy limit in the ring is also discussed.Comment: 5 pages, 4 figure
Kondo screening cloud effects in mesoscopic devices
We study how finite size effects may appear when a quantum dot in the Kondo
Coulomb blockade regime is embedded into a mesoscopic device with finite wires.
These finite size effects appear when the size of the mesoscopic device
containing the quantum dot is of the order of the size of Kondo cloud and
affect all thermodynamic and transport properties of the Kondo quantum dot. We
also generalize our results to the experimentally relevant case where the wires
contain several transverse modes/channels. Our results are based on
perturbation theory, Fermi liquid theory and slave boson mean field theory.Comment: 19 pages, 9 figure
Spin Fluctuation Induced Dephasing in a Mesoscopic Ring
We investigate the persistent current in a hybrid Aharonov-Bohm ring -
quantum dot system coupled to a reservoir which provides spin fluctuations. It
is shown that the spin exchange interaction between the quantum dot and the
reservoir induces dephasing in the absence of direct charge transfer. We
demonstrate an anomalous nature of this spin-fluctuation induced dephasing
which tends to enhance the persistent current. We explain our result in terms
of the separation of the spin from the charge degree of freedom. The nature of
the spin fluctuation induced dephasing is analyzed in detail.Comment: 4 pages, 4 figure
Measurement of direct neutron capture by neutron-rich sulfur isotopes
Thermal neutron capture cross sections for S(n,)S and
S(n,)S have been measured and spectroscopic factors of
the final states have been extracted. The calculated direct-capture cross
sections reproduce the experimental data.Comment: 4 pages (uses espcrc1.sty), 1 postscript figure (uses psfig),
accepted for publication in Nucl. Phys. A (Suppl.), uuencoded tex-files and
postscript-files available at ftp://is1.kph.tuwien.ac.at/pub/ohu/Stherm.u
GAPS IN THE HEISENBERG-ISING MODEL
We report on the closing of gaps in the ground state of the critical
Heisenberg-Ising chain at momentum . For half-filling, the gap closes at
special values of the anisotropy , integer. We explain
this behavior with the help of the Bethe Ansatz and show that the gap scales as
a power of the system size with variable exponent depending on . We use
a finite-size analysis to calculate this exponent in the critical region,
supplemented by perturbation theory at . For rational
fillings, the gap is shown to be closed for {\em all} values of and
the corresponding perturbation expansion in shows a remarkable
cancellation of various diagrams.Comment: 12 RevTeX pages + 4 figures upon reques
Integrable impurities in Hubbard chain with the open boundary condition
The Kondo problem of two impurities in 1D strongly correlated electron system
within the framework of the open boundary Hubbard chain is solved and the
impurities, coupled to the ends of the electron system, are introduced by their
scattering matrices with electrons so that the boundary matrices satisfy the
reflecting integrability condition. The finite size correction of the ground
state energy is obtained due to the impurities. Exact expressions for the low
temperature specific heat contributed by the charge and spin parts of the
magnetic impurities are derived. The Pauli susceptibility and the Kondo
temperature are given explicitly. The Kondo temperature is inversely
proportional to the density of electrons.Comment: 6 pages, Revtex, To appear in Europhysics Letter
Open t-J chain with boundary impurities
We study integrable boundary conditions for the supersymmetric t-J model of
correlated electrons which arise when combining static scattering potentials
with dynamical impurities carrying an internal degree of freedom. The latter
differ from the bulk sites by allowing for double occupation of the local
orbitals. The spectrum of the resulting Hamiltonians is obtained by means of
the algebraic Bethe Ansatz.Comment: LaTeX2e, 9p
Persistent Currents in the Heisenberg chain with a weak link
The Heisenberg chain with a weak link is studied, as a simple example of a
quantum ring with a constriction or defect. The Heisenberg chain is equivalent
to a spinless electron gas under a Jordan-Wigner transformation. Using density
matrix renormalization group and quantum Monte Carlo methods we calculate the
spin/charge stiffness of the model, which determines the strength of the
`persistent currents'. The stiffness is found to scale to zero in the weak link
case, in agreement with renormalization group arguments of Eggert and Affleck,
and Kane and Fisher.Comment: 14 pages, 7 figures, 2 tables, no changes to paper, author list
changed on archiv
- …