21,252 research outputs found
Spin effects in strong-field laser-electron interactions
The electron spin degree of freedom can play a significant role in
relativistic scattering processes involving intense laser fields. In this
contribution we discuss the influence of the electron spin on (i) Kapitza-Dirac
scattering in an x-ray laser field of high intensity, (ii) photo-induced
electron-positron pair production in a strong laser wave and (iii) multiphoton
electron-positron pair production on an atomic nucleus. We show that in all
cases under consideration the electron spin can have a characteristic impact on
the process properties and their total probabilities. To this end,
spin-resolved calculations based on the Dirac equation in the presence of an
intense laser field are performed. The predictions from Dirac theory are also
compared with the corresponding results from the Klein-Gordon equation.Comment: 9 pages, 6 figure
Dynamics and phase evolution of Bose-Einstein condensates in one-dimensional optical lattices
We report experimental results on the dynamics and phase evolution of
Bose-Einstein condensates in 1D optical lattices. The dynamical behaviour is
studied by adiabatically loading the condensate into the lattice and
subsequently switching off the magnetic trap. In this case, the condensate is
free to expand inside the periodic structure of the optical lattice. The phase
evolution of the condensate, on the other hand, can be studied by
non-adiabatically switching on the periodic potential. We observe decays and
revivals of the interference pattern after a time-of-flight.Comment: 6 pages, 5 figures; submitted to the Proceedings of the 11th Laser
Physics Workshop, Bratislava 200
Performance of a First-Level Muon Trigger with High Momentum Resolution Based on the ATLAS MDT Chambers for HL-LHC
Highly selective first-level triggers are essential to exploit the full
physics potential of the ATLAS experiment at High-Luminosity LHC (HL-LHC). The
concept for a new muon trigger stage using the precision monitored drift tube
(MDT) chambers to significantly improve the selectivity of the first-level muon
trigger is presented. It is based on fast track reconstruction in all three
layers of the existing MDT chambers, made possible by an extension of the
first-level trigger latency to six microseconds and a new MDT read-out
electronics required for the higher overall trigger rates at the HL-LHC. Data
from -collisions at is used to study the
minimal muon transverse momentum resolution that can be obtained using the MDT
precision chambers, and to estimate the resolution and efficiency of the
MDT-based trigger. A resolution of better than is found in all sectors
under study. With this resolution, a first-level trigger with a threshold of
becomes fully efficient for muons with a transverse momentum
above in the barrel, and above in the
end-cap region.Comment: 6 pages, 11 figures; conference proceedings for IEEE NSS & MIC
conference, San Diego, 201
Towards the continuum limit in transport coefficient computations
The analytic continuation needed for the extraction of transport coefficients
necessitates in principle a continuous function of the Euclidean time variable.
We report on progress towards achieving the continuum limit for 2-point
correlator measurements in thermal SU(3) gauge theory, with specific attention
paid to scale setting. In particular, we improve upon the determination of the
critical lattice coupling and the critical temperature of pure SU(3) gauge
theory, estimating r0*Tc ~ 0.7470(7) after a continuum extrapolation. As an
application the determination of the heavy quark momentum diffusion coefficient
from a correlator of colour-electric fields attached to a Polyakov loop is
discussed.Comment: 7 pages. To appear in the Proceedings of the 31st International
Symposium on Lattice Field Theory, July 29 - August 3, 2013, Mainz, German
- …