80,458 research outputs found
Effects of External Loads on Human Head Movement Control Systems
The central and reflexive control strategies underlying movements were elucidated by studying the effects of external loads on human head movement control systems. Some experimental results are presented on dynamic changes weigh the addition of aviation helmet (SPH4) and lead weights (6 kg). Intended time-optimal movements, their dynamics and electromyographic activity of neck muscles in normal movements, and also in movements made with external weights applied to the head were measured. It was observed that, when the external loads were added, the subject went through complex adapting processes and the head movement trajectory and its derivatives reached steady conditions only after transient adapting period. The steady adapted state was reached after 15 to 20 seconds (i.e., 5 to 6 movements)
Conformal Symmetry and Pion Form Factor: Soft and Hard Contributions
We discuss a constraint of conformal symmetry in the analysis of the pion
form factor. The usual power-law behavior of the form factor obtained in the
perturbative QCD analysis can also be attained by taking negligible quark
masses in the nonperturbative quark model analysis, confirming the recent
AdS/CFT correspondence. We analyze the transition from soft to hard
contributions in the pion form factor considering a momentum-dependent
dynamical quark mass from a nonnegligible constituent quark mass at low
momentum region to a negligible current quark mass at high momentum region. We
find a correlation between the shape of nonperturbative quark distribution
amplitude and the amount of soft and hard contributions to the pion form
factor.Comment: 7 pages, 6 figures, extensively revised, to appear in Phys. Rev.
Changes of Physico–Chemical Properties of Pig Slurry During Storage
This study was aimed to determine changes of the characteristics of raw pig slurry as liquid organic fertilizer at various storage times. A completely randomized design was used in this research. The treatments were storage times, i.e.: 0, 15, 30, 45, and 60 days. Variables observed were loss of the slurry, degree of acidity (pH), electrical conductivity (EC), total solid (TS), volatile solid (VS), total chemical oxygen demand (tCOD), soluble chemical oxygen demand (sCOD), total nitrogen (TN), ammonia-nitrogen (NH3-N), nitrate-nitrogen (NO3-N), total phosphate (TP), and dissolve reactive phosphate (DRP). The results showed that storage time significantly affected all the observed variables, except the concentration of NO3-N and total phosphate content. The pH, TS, VS, DRP, and losses of slurry lost during storage times increased, while EC, TN, NH3-N, tCOD, and sCOD decreased. Physico-chemical properties of slurry during storage times changed, as a result of organic matter breakdown
Affine maps of density matrices
For quantum systems described by finite matrices, linear and affine maps of
matrices are shown to provide equivalent descriptions of evolution of density
matrices for a subsystem caused by unitary Hamiltonian evolution in a larger
system; an affine map can be replaced by a linear map, and a linear map can be
replaced by an affine map. There may be significant advantage in using an
affine map. The linear map is generally not completely positive, but the linear
part of an equivalent affine map can be chosen to be completely positive and
related in the simplest possible way to the unitary Hamiltonian evolution in
the larger system.Comment: 4 pages, title changed, sentence added, reference update
Continuity of generalized parton distributions for the pion virtual Compton scattering
We discuss a consistent treatment of the light-front gauge-boson and meson
wave functions in the analyses of the generalized parton distributions(GPDs)
and the scattering amplitudes in deeply virtual Compton scattering(DVCS) for
the pion. The continuity of the GPDs at the crossover, where the longitudinal
momentum fraction of the probed quark is same with the skewedness parameter,
and the finiteness of the DVCS amplitude are ensured if the same light-front
radial wave function as that of the meson bound state wave function is used for
the gauge boson bound state arising from the pair-creation(or nonvalence)
diagram. The frame-independence of our model calculation is also guaranteed by
the constraint from the sum rule between the GPDs and the form factors.Comment: 14 pages, 9 figures, we (1) changed the title, (2) added references,
(3) discussed the GPD value at the crossover in Sec. III, version to appear
in Phys. Rev.
Defect Motion and Lattice Pinning Barrier in Josephson-Junction Ladders
We study motion of domain wall defects in a fully frustrated
Josephson-unction ladder system, driven by small applied currents. For small
system sizes, the energy barrier E_B to the defect motion is computed
analytically via symmetry and topological considerations. More generally, we
perform numerical simulations directly on the equations of motion, based on the
resistively-shunted junction model, to study the dynamics of defects, varying
the system size. Coherent motion of domain walls is observed for large system
sizes. In the thermodynamical limit, we find E_B=0.1827 in units of the
Josephson coupling energy.Comment: 7 pages, and to apear in Phys. Rev.
Critical currents for vortex defect motion in superconducting arrays
We study numerically the motion of vortices in two-dimensional arrays of
resistively shunted Josephson junctions. An extra vortex is created in the
ground states by introducing novel boundary conditions and made mobile by
applying external currents. We then measure critical currents and the
corresponding pinning energy barriers to vortex motion, which in the
unfrustrated case agree well with previous theoretical and experimental
findings. In the fully frustrated case our results also give good agreement
with experimental ones, in sharp contrast with the existing theoretical
prediction. A physical explanation is provided in relation with the vortex
motion observed in simulations.Comment: To appear in Physical Review
- …