112 research outputs found

    Relativistic Iron Line Emission from the Neutron Star Low-mass X-ray Binary 4U 1636-536

    Full text link
    We present an analysis of XMM-Newton and RXTE data from three observations of the neutron star LMXB 4U 1636-536. The X-ray spectra show clear evidence of a broad, asymmetric iron emission line extending over the energy range 4-9 keV. The line profile is consistent with relativistically broadened Fe K-alpha emission from the inner accretion disk. The Fe K-alpha line in 4U 1636-536 is considerably broader than the asymmetric iron lines recently found in other neutron star LMXBs, which indicates a high disk inclination. We find evidence that the broad iron line feature is a combination of several K-alpha lines from iron in different ionization states.Comment: 7 pages, 2 figures, Published in the Astrophysical Journa

    The giant planet orbiting the cataclysmic binary DP Leonis

    Full text link
    Planets orbiting post-common envelope binaries provide fundamental information on planet formation and evolution, especially for the yet nearly unexplored class of circumbinary planets. We searched for such planets in \odp, an eclipsing short-period binary, which shows long-term eclipse-time variations. Using published, reanalysed, and new mid-eclipse times of the white dwarf in DP\,Leo, obtained between 1979 and 2010, we find agreement with the light-travel-time effect produced by a third body in an elliptical orbit. In particular, the measured binary period in 2009/2010 and the implied radial velocity coincide with the values predicted for the motion of the binary and the third body around the common center of mass. The orbital period, semi-major axis, and eccentricity of the third body are P_c = 28.0 +/- 2.0 yrs, a_c = 8.2 +/- 0.4 AU, and e_c = 0.39 +/- 0.13. Its mass of M_c sin(i_c) = 6.1 +/- 0.5 M_J qualifies it as a giant planet. It formed either as a first generation object in a protoplanetary disk around the original binary or as a second generation object in a disk formed in the common envelope shed by the progenitor of the white dwarf. Even a third generation origin in matter lost from the present accreting binary can not be entirely excluded. We searched for, but found no evidence for a fourth body.Comment: Accepted by A&

    The XMM-Newton Optical/UV Monitor Telescope

    Get PDF
    The XMM-OM instrument extends the spectral coverage of the XMM-Newton observatory into the ultraviolet and optical range. It provides imaging and time-resolved data on targets simultaneously with observations in the EPIC and RGS. It also has the ability to track stars in its field of view, thus providing an improved post-facto aspect solution for the spacecraft. An overview of the XMM-OM and its operation is given, together with current information on the performance of the instrument

    The XMM-Newton Optical/UV Monitor Telescope

    Full text link
    The XMM-OM instrument extends the spectral coverage of the XMM-Newton observatory into the ultraviolet and optical range. It provides imaging and time-resolved data on targets simultaneously with observations in the EPIC and RGS. It also has the ability to track stars in its field of view, thus providing an improved post-facto aspect solution for the spacecraft. An overview of the XMM-OM and its operation is given, together with current information on the performance of the instrument.Comment: Accepted by A&A for publication in the Special Issue on 1st science with XMM Newton, 9 page

    Irregular Mass Transfer in the Polars VV Puppis and V393 Pavonis during the Low State

    Full text link
    The polars VV Pup and V393 Pav were observed with XMM-Newton during states of low accretion rate with peak X-ray luminosities of ~1 x 10^30 and ~1 x 10^31 erg/s, respectively. In both polars, accretion onto the white dwarf was extremely irregular, and the accretion rate varied by more than 1 order of magnitude on timescales of ~1 hr. Our observations suggest that this type of irregular accretion is a common phenomenon in polars during the low state. The likely cause of the accretion rate fluctuations are coronal mass ejections or solar flares on the companion star that intermittently increase the mass transfer into the accretion stream. Our findings demonstrate that the companion stars in cataclysmic variables possess highly active atmospheres.Comment: Accepted for publication in ApJ, 16 pages, 3 figure

    VERITAS Observations of the gamma-Ray Binary LS I +61 303

    Get PDF
    LS I +61 303 is one of only a few high-mass X-ray binaries currently detected at high significance in very high energy gamma-rays. The system was observed over several orbital cycles (between September 2006 and February 2007) with the VERITAS array of imaging air-Cherenkov telescopes. A signal of gamma-rays with energies above 300 GeV is found with a statistical significance of 8.4 standard deviations. The detected flux is measured to be strongly variable; the maximum flux is found during most orbital cycles at apastron. The energy spectrum for the period of maximum emission can be characterized by a power law with a photon index of Gamma=2.40+-0.16_stat+-0.2_sys and a flux above 300 GeV corresponding to 15-20% of the flux from the Crab Nebula.Comment: accepted for publication in The Astrophysical Journa

    Observations of the unidentified gamma-ray source TeV J2032+4130 by VERITAS

    Full text link
    TeV J2032+4130 was the first unidentified source discovered at very high energies (VHE; E >> 100 GeV), with no obvious counterpart in any other wavelength. It is also the first extended source to be observed in VHE gamma rays. Following its discovery, intensive observational campaigns have been carried out in all wavelengths in order to understand the nature of the object, which have met with limited success. We report here on a deep observation of TeV J2032+4130, based on 48.2 hours of data taken from 2009 to 2012 by the VERITAS (Very Energetic Radiation Imaging Telescope Array System) experiment. The source is detected at 8.7 standard deviations (σ\sigma) and is found to be extended and asymmetric with a width of 9.5′^{\prime}±\pm1.2′^{\prime} along the major axis and 4.0′^{\prime}±\pm0.5′^{\prime} along the minor axis. The spectrum is well described by a differential power law with an index of 2.10 ±\pm 0.14stat_{stat} ±\pm 0.21sys_{sys} and a normalization of (9.5 ±\pm 1.6stat_{stat} ±\pm 2.2sys_{sys}) ×\times 10−13^{-13}TeV−1^{-1} cm−2^{-2} s−1^{-1} at 1 TeV. We interpret these results in the context of multiwavelength scenarios which particularly favor the pulsar wind nebula (PWN) interpretation

    Evidence for long-term Gamma-ray and X-ray variability from the unidentified TeV source HESS J0632+057

    Full text link
    HESS J0632+057 is one of only two unidentified very-high-energy gamma-ray sources which appear to be point-like within experimental resolution. It is possibly associated with the massive Be star MWC 148 and has been suggested to resemble known TeV binary systems like LS I +61 303 or LS 5039. HESS J0632+057 was observed by VERITAS for 31 hours in 2006, 2008 and 2009. During these observations, no significant signal in gamma rays with energies above 1 TeV was detected from the direction of HESS J0632+057. A flux upper limit corresponding to 1.1% of the flux of the Crab Nebula has been derived from the VERITAS data. The non-detection by VERITAS excludes with a probability of 99.993% that HESS J0632+057 is a steady gamma-ray emitter. Contemporaneous X-ray observations with Swift XRT reveal a factor of 1.8+-0.4 higher flux in the 1-10 keV range than earlier X-ray observations of HESS J0632+057. The variability in the gamma-ray and X-ray fluxes supports interpretation of the ob ject as a gamma-ray emitting binary.Comment: 8 pages, 3 figures, Accepted for publication in The Astrophysical Journa

    Investigating the TeV Morphology of MGRO J1908+06 with VERITAS

    Full text link
    We report on deep observations of the extended TeV gamma-ray source MGRO J1908+06 made with the VERITAS very high energy (VHE) gamma-ray observatory. Previously, the TeV emission has been attributed to the pulsar wind nebula (PWN) of the Fermi-LAT pulsar PSR J1907+0602. We detect MGRO J1908+06 at a significance level of 14 standard deviations (14 sigma) and measure a photon index of 2.20 +/- 0.10_stat +/- 0.20_sys. The TeV emission is extended, covering the region near PSR J1907+0602 and also extending towards SNR G40.5--0.5. When fitted with a 2-dimensional Gaussian, the intrinsic extension has a standard deviation of sigma_src = 0.44 +/- 0.02 degrees. In contrast to other TeV PWNe of similar age in which the TeV spectrum softens with distance from the pulsar, the TeV spectrum measured near the pulsar location is consistent with that measured at a position near the rim of G40.5--0.5, 0.33 degrees away.Comment: To appear in ApJ, 8 page

    A Search for Very High-Energy Gamma Rays from the Missing Link Binary Pulsar J1023+0038 with VERITAS

    Full text link
    The binary millisecond radio pulsar PSR J1023+0038 exhibits many characteristics similar to the gamma-ray binary system PSR B1259--63/LS 2883, making it an ideal candidate for the study of high-energy non-thermal emission. It has been the subject of multi-wavelength campaigns following the disappearance of the pulsed radio emission in 2013 June, which revealed the appearance of an accretion disk around the neutron star. We present the results of very high-energy gamma-ray observations carried out by VERITAS before and after this change of state. Searches for steady and pulsed emission of both data sets yield no significant gamma-ray signal above 100 GeV, and upper limits are given for both a steady and pulsed gamma-ray flux. These upper limits are used to constrain the magnetic field strength in the shock region of the PSR J1023+0038 system. Assuming that very high-energy gamma rays are produced via an inverse-Compton mechanism in the shock region, we constrain the shock magnetic field to be greater than ∼\sim2 G before the disappearance of the radio pulsar and greater than ∼\sim10 G afterwards.Comment: 7 pages, 3 figures, accepted for publication in Ap
    • …
    corecore