5,570 research outputs found

    The chemical evolution of local star forming galaxies: Radial profiles of ISM metallicity, gas mass, and stellar mass and constraints on galactic accretion and winds

    Full text link
    The radially averaged metallicity distribution of the ISM and the young stellar population of a sample of 20 disk galaxies is investigated by means of an analytical chemical evolution model which assumes constant ratios of galactic wind mass loss and accretion mass gain to star formation rate. Based on this model the observed metallicities and their gradients can be described surprisingly well by the radially averaged distribution of the ratio of stellar mass to ISM gas mass. The comparison between observed and model predicted metallicity is used to constrain the rate of mass loss through galactic wind and accretion gain in units of the star formation rate. Three groups of galaxies are found: galaxies with either mostly winds and only weak accretion, or mostly accretion and only weak winds, and galaxies where winds are roughly balanced by accretion. The three groups are distinct in the properties of their gas disks. Galaxies with approximately equal rates of mass-loss and accretion gain have low metallicity, atomic hydrogen dominated gas disks with a flat spatial profile. The other two groups have gas disks dominated by molecular hydrogen out to 0.5 to 0.7 isophotal radii and show a radial exponential decline, which is on average steeper for the galaxies with small accretion rates. The rates of accretion (<1.0 x SFR) and outflow (<2.4 x SFR) are relatively low. The latter depend on the calibration of the zero point of the metallicity determination from the use of HII region strong emission lines.Comment: 19 pages, 17 figure, accepted to MNRA

    Local tunneling spectroscopy as signatures of the Fulde-Ferrell-Larkin-Ovchinnikov state in s- and d-wave Superconductors

    Get PDF
    The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states for two-dimensional s- and d-wave superconductors (s- and d-SC) are self-consistently studied under an in-plane magnetic field. While the stripe solution of the order parameter (OP) is found to have lower free energy in s-SC, a square lattice solution appears to be energetically more favorable in the case of d-SC. At certain symmetric sites, we find that the features in the local density of states (LDOS) can be ascribed to two types of bound states. We also show that the LDOS maps for d-SC exhibit bias-energy-dependent checkerboard patterns. These characteristics can serve as signatures of the FFLO states.Comment: 5 pages, 5 figures Type and grammaratic errors corrected. Last figure replaced by colored one. To appear in PR

    Metallicity gradients in local field star-forming galaxies: Insights on inflows, outflows, and the coevolution of gas, stars and metals

    Full text link
    We present metallicity gradients in 49 local field star-forming galaxies. We derive gas-phase oxygen abundances using two widely adopted metallicity calibrations based on the [OIII]/Hbeta, [NII]/Halpha and [NII]/[OII] line ratios. The two derived metallicity gradients are usually in good agreement within +/-0.14 dex/R25 (R25 is the B-band iso-photoal radius), but the metallicity gradients can differ significantly when the ionisation parameters change systematically with radius. We investigate the metallicity gradients as a function of stellar mass (8<log(M*/Msun)<11) and absolute B-band luminosity (-16 > MB > -22). When the metallicity gradients are expressed in dex/kpc, we show that galaxies with lower mass and luminosity, on average, have steeper metallicity gradients. When the metallicity gradients are expressed in dex/R25, we find no correlation between the metallicity gradients, and stellar mass and luminosity. We provide a local benchmark metallicity gradient of field star-forming galaxies useful for comparison with studies at high redshifts. We investigate the origin of the local benchmark gradient using simple chemical evolution models and observed gas and stellar surface density profiles in nearby field spiral galaxies. Our models suggest that the local benchmark gradient is a direct result of the coevolution of gas and stellar disk under virtually closed-box chemical evolution when the stellar-to-gas mass ratio becomes high (>>0.3). These models imply low current mass accretion rates (<0.3xSFR), and low mass outflow rates (<3xSFR) in local field star-forming galaxies.Comment: 25 pages, 21 figures, accepted to MNRA

    Non-Markovian Quantum Trajectories Versus Master Equations: Finite Temperature Heat Bath

    Full text link
    The interrelationship between the non-Markovian stochastic Schr\"odinger equations and the corresponding non-Markovian master equations is investigated in the finite temperature regimes. We show that the general finite temperature non-Markovian trajectories can be used to derive the corresponding non-Markovian master equations. A simple, yet important solvable example is the well-known damped harmonic oscillator model in which a harmonic oscillator is coupled to a finite temperature reservoir in the rotating wave approximation. The exact convolutionless master equation for the damped harmonic oscillator is obtained by averaging the quantum trajectories relying upon no assumption of coupling strength or time scale. The master equation derived in this way automatically preserves the positivity, Hermiticity and unity.Comment: 19 pages, typos corrected, references adde

    A note on Zolotarev optimal rational approximation for the overlap Dirac operator

    Full text link
    We discuss the salient features of Zolotarev optimal rational approximation for the inverse square root function, in particular, for its applications in lattice QCD with overlap Dirac quark. The theoretical error bound for the matrix-vector multiplication Hw(Hw2)1/2Y H_w (H_w^2)^{-1/2}Y is derived. We check that the error bound is always satisfied amply, for any QCD gauge configurations we have tested. An empirical formula for the error bound is determined, together with its numerical values (by evaluating elliptic functions) listed in Table 2 as well as plotted in Figure 3. Our results suggest that with Zolotarev approximation to (Hw2)1/2 (H_w^2)^{-1/2} , one can practically preserve the exact chiral symmetry of the overlap Dirac operator to very high precision, for any gauge configurations on a finite lattice.Comment: 23 pages, 5 eps figures, v2:minor clarifications, and references added, to appear in Phys. Rev.

    The mechanism of hole carrier generation and the nature of pseudogap- and 60K-phases in YBCO

    Full text link
    In the framework of the model assuming the formation of NUC on the pairs of Cu ions in CuO2_{2} plane the mechanism of hole carrier generation is considered and the interpretation of pseudogap and 60 K-phases in YBa2Cu3O6+δYBa_{2}Cu_{3}O_{6+\delta}. is offered. The calculated dependences of hole concentration in YBa2Cu3O6+δYBa_{2}Cu_{3}O_{6+\delta} on doping δ\delta and temperature are found to be in a perfect quantitative agreement with experimental data. As follows from the model the pseudogap has superconducting nature and arises at temperature T>Tc>TcT^{*}>T_{c\infty}>T_{c} in small clusters uniting a number of NUC's due to large fluctuations of NUC occupation. Here TcT_{c\infty} and TcT_{c} are the superconducting transition temperatures of infinite and finite clusters of NUC's, correspondingly. The calculated T(δ)T^{*}(\delta) and Tn(δ)T_{n}(\delta) dependences are in accordance with experiment. The area between T(δ)T^{*}(\delta) and Tn(δ)T_{n}(\delta) corresponds to the area of fluctuations where small clusters fluctuate between superconducting and normal states owing to fluctuations of NUC occupation. The results may serve as important arguments in favor of the proposed model of HTSC.Comment: 12 pages, 7 figure

    A practical implementation of the Overlap-Dirac operator

    Full text link
    A practical implementation of the Overlap-Dirac operator 1+γ5ϵ(H)2{{1+\gamma_5\epsilon(H)}\over 2} is presented. The implementation exploits the sparseness of HH and does not require full storage. A simple application to parity invariant three dimensional SU(2) gauge theory is carried out to establish that zero modes related to topology are exactly reproduced on the lattice.Comment: Y-axis label in figure correcte

    The nonabelian tensor square of a Bieberbach group with symmetric point group of order six

    Get PDF
    Bieberbach groups are torsion free crystallographic groups. In this paper, our focus is given on the Bieberbach groups with symmetric point group of order six. The nonabelian tensor square of a group is a well known homological functor which can reveal the properties of a group. With the method developed for polycyclic groups, the nonabelian tensor square of one of the Bieberbach groups of dimension four with symmetric point group of order six is computed. The nonabelian tensor square of this group is found to be not abelian and its presentation is constructed
    corecore