78,808 research outputs found

    Tungsten fibre reinforced Zr-based bulk metallic glass composites

    Get PDF
    A Zr-based bulk metallic glass (BMG) alloy with the composition (Zr55Al10Ni5Cu30)98.5Si1.5 was used as the base material to form BMG composites. Tungsten fiber reinforced BMG composites were successfully fabricated by pressure metal infiltration technique, with the volume fraction of the tungsten fiber ranging from 10% to 70%. Microstructure and mechanical properties of the BMG composites were investigated. Tungsten reinforcement significantly increased the material’s ductility by changing the compressive failure mode from single shear band propagation to multiple shear bands propagation, and transferring stress from matrix to tungsten fibers

    Indirect exchange of magnetic impurities in zigzag graphene ribbon

    Full text link
    We use quantum Monte Carlo method to study the indirect coupling between two magnetic impurities on the zigzag edge of graphene ribbon, with respect to the chemical potential μ\mu. We find that the spin-spin correlation between two adatoms located on the nearest sites in the zigzag edge are drastically suppressed around the zero-energy. As we switch the system away from half-filling, the antiferromagnetic correlation is first enhanced and then decreased. If the two adatoms are adsorbed on the sites belonging to the same sublattice, we find similar behavior of spin-spin correlation except for a crossover from ferromagnetic to antiferromagentic correlation in the vicinity of zero-energy. We also calculated the weight of different components of d-electron wave function and local magnet moment for various values of parameters, and all the results are consistent with those of spin-spin correlation between two magnetic impurities.Comment: 3 pages, 4 figures, conference proceedin

    Integrable impurities in Hubbard chain with the open boundary condition

    Full text link
    The Kondo problem of two impurities in 1D strongly correlated electron system within the framework of the open boundary Hubbard chain is solved and the impurities, coupled to the ends of the electron system, are introduced by their scattering matrices with electrons so that the boundary matrices satisfy the reflecting integrability condition. The finite size correction of the ground state energy is obtained due to the impurities. Exact expressions for the low temperature specific heat contributed by the charge and spin parts of the magnetic impurities are derived. The Pauli susceptibility and the Kondo temperature are given explicitly. The Kondo temperature is inversely proportional to the density of electrons.Comment: 6 pages, Revtex, To appear in Europhysics Letter

    Mode-locking of incommensurate phase by quantum zero point energy in the Frenkel-Kontorova model

    Get PDF
    In this paper, it is shown that a configuration modulated system described by the Frenkel-Kontorova model can be locked at an incommensurate phase when the quantum zero point energy is taken into account. It is also found that the specific heat for an incommensurate phase shows different parameter-dependence in sliding phase and pinning phase. These findings provide a possible way for experimentalists to verify the phase transition by breaking of analyticity.Comment: 6 pages in Europhys style, 3 eps figure

    Asymmetric Properties of Heat Conduction in a One-Dimensional Frenkel-Kontorova Model

    Get PDF
    In this Letter, we show numerically that the rectifying effect of heat flux in a one-dimensional two-segment Frenkel-Kontorova chain demonstrated in recent literature is merely available under the limit of the weak coupling between the two constituent segments. Surprisingly, the rectifying effect will be reversed when the properties of the interface and the system size change. The two types of asymmetric heat conduction are dominated by different mechanisms, which are all induced by the nonlinearity. We further discuss the possibility of the experimental realization of thermal diode or rectifier devices.Comment: 4 Pages, 4 figure

    Possible thermodynamic structure underlying the laws of Zipf and Benford

    Full text link
    We show that the laws of Zipf and Benford, obeyed by scores of numerical data generated by many and diverse kinds of natural phenomena and human activity are related to the focal expression of a generalized thermodynamic structure. This structure is obtained from a deformed type of statistical mechanics that arises when configurational phase space is incompletely visited in a severe way. Specifically, the restriction is that the accessible fraction of this space has fractal properties. The focal expression is an (incomplete) Legendre transform between two entropy (or Massieu) potentials that when particularized to first digits leads to a previously existing generalization of Benford's law. The inverse functional of this expression leads to Zipf's law; but it naturally includes the bends or tails observed in real data for small and large rank. Remarkably, we find that the entire problem is analogous to the transition to chaos via intermittency exhibited by low-dimensional nonlinear maps. Our results also explain the generic form of the degree distribution of scale-free networks.Comment: To be published in European Physical Journal
    corecore