23,795 research outputs found

    Influence of the indirect restoration design on the fracture resistance: a finite element study

    Get PDF
    published_or_final_versio

    An Improved Quantum Molecular Dynamics Model and its Applications to Fusion Reaction near Barrier

    Get PDF
    An improved Quantum Molecular Dynamics model is proposed. By using this model, the properties of ground state of nuclei from 6^{6}Li to 208^{208}Pb can be described very well with one set of parameters. The fusion reactions for 40^{40}Ca+90^{90}Zr, 40^{40}Ca+96^{96}Zr and 48^{48}Ca+90^{90}Zr at energy near barrier are studied by this model. The experimental data of the fusion cross sections for 40^{40}Ca+90,96^{90,96}Zr at the energy near barrier can be reproduced remarkably well without introducing any new parameters. The mechanism for the enhancement of fusion probability for fusion reactions with neutron-rich projectile or target is analyzed.Comment: 20 pages, 12 figures, 3 table

    PACF: A precision-adjustable computational framework for solving singular values

    Get PDF
    Singular value decomposition (SVD) plays a significant role in matrix analysis, and the differential quotient difference with shifts (DQDS) algorithm is an important technique for solving singular values of upper bidiagonal matrices. However, ill-conditioned matrices and large-scale matrices may cause inaccurate results or long computation times when solving singular values. At the same time, it is difficult for users to effectively find the desired solution according to their needs. In this paper, we design a precision-adjustable computational framework for solving singular values, named PACF. In our framework, the same solution algorithm contains three options: original mode, high-precision mode, and mixed-precision mode. The first algorithm is the original version of the algorithm. The second algorithm is a reliable numerical algorithm we designed using Error-free transformation (EFT) technology. The last algorithm is an efficient numerical algorithm we developed using the mixed-precision idea. Our PACF can add different solving algorithms for different types of matrices, which are universal and extensible. Users can choose different algorithms to solve singular values according to different needs. This paper implements the high-precision DQDS and mixed-precision DQDS algorithms and conducts extensive experiments on a supercomputing platform to demonstrate that our algorithm is reliable and efficient. Besides, we introduce the error analysis of the inner loop of the DQDS and HDQDS algorithms

    Dynamic study on fusion reactions for 40,48^{40,48}Ca+90,96^{90,96}Zr around Coulomb barrier

    Full text link
    By using the updated improved Quantum Molecular Dynamics model in which a surface-symmetry potential term has been introduced for the first time, the excitation functions for fusion reactions of 40,48^{40,48}Ca+90,96^{90,96}Zr at energies around the Coulomb barrier have been studied. The experimental data of the fusion cross sections for 40^{40}Ca+90,96^{90,96}Zr have been reproduced remarkably well without introducing any new parameters. The fusion cross sections for the neutron-rich fusion reactions of 48^{48}Ca+90,96^{90,96}Zr around the Coulomb barrier are predicted to be enhanced compared with a non-neutron-rich fusion reaction. In order to clarify the mechanism of the enhancement of the fusion cross sections for neutron-rich nuclear fusions, we pay a great attention to study the dynamic lowering of the Coulomb barrier during a neck formation. The isospin effect on the barrier lowering is investigated. It is interesting that the effect of the projectile and target nuclear structure on fusion dynamics can be revealed to a certain extent in our approach. The time evolution of the N/Z ratio at the neck region has been firstly illustrated. A large enhancement of the N/Z ratio at neck region for neutron-rich nuclear fusion reactions is found.Comment: 21 pages, 7 figures,3 table

    Electrochemical polymerisation of phenol in aqueous solution on a Ta/PbO2 anode

    Get PDF
    This paper deals with the treatment of aqueous phenol solutions using an electrochemical technique. Phenol can be partly eliminated from aqueous solution by electrochemically initiated polymerisation. Galvanostatic electrolyses of phenol solutions at concentration up to 0.1 mol dm−3 were carried out on a Ta/PbO2 anode. The polymers formed are insoluble in acidic medium but soluble in alkaline. These polymers were filtered and then dissolved in aqueous solution of sodium hydroxide (1 mol dm−3). The polymers formed were quantified by total organic carbon (TOC) measurement. It was found that the conversion of phenol into polymers increases as a function of initial concentration, anodic current density, temperature, and solution pH. The percentage of phenol polymerised can reach 15%

    Nonlinear AC resistivity in s-wave and d-wave disordered granular superconductors

    Full text link
    We model s-wave and d-wave disordered granular superconductors with a three-dimensional lattice of randomly distributed Josephson junctions with finite self-inductance. The nonlinear ac resistivity of these systems was calculated using Langevin dynamical equations. The current amplitude dependence of the nonlinear resistivity at the peak position is found to be a power law characterized by exponent α\alpha. The later is not universal but depends on the self-inductance and current regimes. In the weak current regime α\alpha is independent of the self-inductance and equal to 0.5 or both of s- and d-wave materials. In the strong current regime this exponent depends on the screening. We find α≈1\alpha \approx 1 for some interval of inductance which agrees with the experimental finding for d-wave ceramic superconductors.Comment: 4 pages, 5 figures, to appear in Phys. Rev. Let

    Negative phase time for Scattering at Quantum Wells: A Microwave Analogy Experiment

    Full text link
    If a quantum mechanical particle is scattered by a potential well, the wave function of the particle can propagate with negative phase time. Due to the analogy of the Schr\"odinger and the Helmholtz equation this phenomenon is expected to be observable for electromagnetic wave propagation. Experimental data of electromagnetic wells realized by wave guides filled with different dielectrics confirm this conjecture now.Comment: 10 pages, 6 figure

    Upregulation of chondroitin 6-sulphotransferase-1 facilities Schwann cell migration during axonal growth

    Get PDF
    Cell migration is central to development and posttraumatic regeneration. The differential increase in 6-sulphated chondroitins during axonal growth in both crushed sciatic nerves and brain development suggests that chondroitin 6-sulphotransferase-1 (C6ST-1) is a key enzyme that mediates cell migration in the process. We have cloned the cDNA of the C6ST-1 gene (C6st1) (GenBank accession number AF178689) from crushed sciatic nerves of adult rats and produced ribonucleotide probes accordingly to track signs of 6-sulphated chondroitins at the site of injury. We found C6st1 mRNA expression in Schwann cells emigrating from explants of both sciatic nerve segments and embryonic dorsal root ganglia. Immunocytochemistry indicated pericellular 6-sulphated chondroitin products around C6ST-1-expressing frontier cells. Motility analysis of frontier cells in cultures subjected to staged treatment with chondroitinase ABC indicated that freshly produced 6-sulphated chondroitin moieties facilitated Schwann cell motility, unlike restrictions resulting from proteoglycan interaction with matrix components. Sciatic nerve crush provided further evidence of in vivo upregulation of the C6ST-1 gene in mobile Schwann cells that guided axonal regrowth 1-14 days post crush; downregulation then accompanied declining mobility of Schwann cells as they engaged in the myelination of re-growing axons. These findings are the first to identify upregulated C6st1 gene expression correlating with the motility of Schwann cells that guide growing axons through both developmental and injured environments.published_or_final_versio

    High-efficiency Urban-traffic Management in Context-aware Computing and 5G Communication

    Get PDF
    With the increasing number of vehicle and traffic jams, urban-traffic management is becoming a serious issue. In this article, we propose novel four-tier architecture for urban-traffic management with the convergence of vehicle ad hoc networks (VANETs), 5G wireless network, software-defined network (SDN), and mobile-edge computing (MEC) technologies. The proposed architecture provides better communication and rapider responsive speed in a more distributed and dynamic manner. The practical case of rapid accident rescue can significantly cut down the time for rescue. Key technologies with respect to vehicle localization, data pre-fetching, traffic lights control, and traffic prediction are also discussed. Obviously, the novel architecture shows noteworthy potential for alleviating the traffic congestion and improving the efficiency of urban-traffic management

    Time scales of epidemic spread and risk perception on adaptive networks

    Full text link
    Incorporating dynamic contact networks and delayed awareness into a contagion model with memory, we study the spreading patterns of infectious diseases in connected populations. It is found that the spread of an infectious disease is not only related to the past exposures of an individual to the infected but also to the time scales of risk perception reflected in the social network adaptation. The epidemic threshold pcp_{c} is found to decrease with the rise of the time scale parameter s and the memory length T, they satisfy the equation pc=1T+ωTas(1−e−ωT2/as)p_{c} =\frac{1}{T}+ \frac{\omega T}{a^s(1-e^{-\omega T^2/a^s})}. Both the lifetime of the epidemic and the topological property of the evolved network are considered. The standard deviation σd\sigma_{d} of the degree distribution increases with the rise of the absorbing time tct_{c}, a power-law relation σd=mtcγ\sigma_{d}=mt_{c}^\gamma is found
    • …
    corecore