13,807 research outputs found

    Dynamical Linear Response of TDDFT with LDA+U Functional: strongly hybridized Frenkel excitons in NiO

    Get PDF
    Within the framework of time-dependent density-functional theory (TDDFT), we derive the dynamical linear response of LDA+U functional and benchmark it on NiO, a prototypical Mott insulator. Formulated using real-space Wannier functions, our computationally inexpensive framework gives detailed insights into the formation of tightly bound Frenkel excitons with reasonable accuracy. Specifically, a strong hybridization of multiple excitons is found to significantly modify the exciton properties. Furthermore, our study exposes a significant generic limitation of adiabatic approximation in TDDFT with hybrid functionals and in existing Bethe-Salpeter-equation approaches, advocating the necessity of strongly energy-dependent kernels in future development.Comment: 5 pages, 2 figure

    CloudTPS: Scalable Transactions for Web Applications in the Cloud

    Get PDF
    NoSQL Cloud data services provide scalability and high availability properties for web applications but at the same time they sacrifice data consistency. However, many applications cannot afford any data inconsistency. CloudTPS is a scalable transaction manager to allow cloud database services to execute the ACID transactions of web applications, even in the presence of server failures and network partitions. We implement this approach on top of the two main families of scalable data layers: Bigtable and SimpleDB. Performance evaluation on top of HBase (an open-source version of Bigtable) in our local cluster and Amazon SimpleDB in the Amazon cloud shows that our system scales linearly at least up to 40 nodes in our local cluster and 80 nodes in the Amazon cloud

    Constraints on millicharged particles with low threshold germanium detectors at Kuo-Sheng Reactor Neutrino Laboratory

    Get PDF
    Relativistic millicharged particles (χq\chi_q) have been proposed in various extensions to the Standard Model of particle physics. We consider the scenarios where they are produced at nuclear reactor core and via interactions of cosmic-rays with the earth's atmosphere. Millicharged particles could also be candidates for dark matter, and become relativistic through acceleration by supernova explosion shock waves. The atomic ionization cross section of χq\chi_q with matter are derived with the equivalent photon approximation. Smoking-gun signatures with significant enhancement in the differential cross section are identified. New limits on the mass and charge of χq\chi_q are derived, using data taken with a point-contact germanium detector with 500g mass functioning at an energy threshold of 300~eV at the Kuo-Sheng Reactor Neutrino Laboratory.Comment: 8 pages, 7 figure

    First-principles method of propagation of tightly bound excitons: exciton band structure of LiF and verification with inelastic x-ray scattering

    Get PDF
    We propose a simple first-principles method to describe propagation of tightly bound excitons. By viewing the exciton as a composite object (an effective Frenkel exciton in Wannier orbitals), we define an exciton kinetic kernel to encapsulate the exciton propagation and decay for all binding energy. Applied to prototypical LiF, our approach produces three exciton bands, which we verified quantitatively via inelastic x-ray scattering. The proposed real-space picture is computationally inexpensive and thus enables study of the full exciton dynamics, even in the presence of surfaces and impurity scattering. It also provides intuitive understanding to facilitate practical exciton engineering in semiconductors, strongly correlated oxides, and their nanostructures.Comment: 5 pages, 4 figures. Accepted by PR
    corecore