49,006 research outputs found

    Fibre DFB lasers in a 4x10 Gbit/s WDM link with a single sinc-sampled fibre grating dispersion compensator

    No full text
    WDM transmission and dispersion compensation at 40 Gbit/s over 200 km standard fibre is demonstrated on a 100 GHz grid using four high power single-polarisation single-sided output DFB fibre laser based transmitters and a single 4 channel WDM chirped fibre Bragg grating dispersion compensator

    Phase properties of hypergeometric states and negative hypergeometric states

    Get PDF
    We show that the three quantum states (Poˊ\acute{o}lya states, the generalized non-classical states related to Hahn polynomials and negative hypergeometric states) introduced recently as intermediates states which interpolate between the binomial states and negative binomial states are essentially identical. By using the Hermitial-phase-operator formalism, the phase properties of the hypergeometric states and negative hypergeometric states are studied in detail. We find that the number of peaks of phase probability distribution is one for the hypergeometric states and MM for the negative hypergeometric states.Comment: 7 pages, 4 figure

    Integral geometry of complex space forms

    Full text link
    We show how Alesker's theory of valuations on manifolds gives rise to an algebraic picture of the integral geometry of any Riemannian isotropic space. We then apply this method to give a thorough account of the integral geometry of the complex space forms, i.e. complex projective space, complex hyperbolic space and complex euclidean space. In particular, we compute the family of kinematic formulas for invariant valuations and invariant curvature measures in these spaces. In addition to new and more efficient framings of the tube formulas of Gray and the kinematic formulas of Shifrin, this approach yields a new formula expressing the volumes of the tubes about a totally real submanifold in terms of its intrinsic Riemannian structure. We also show by direct calculation that the Lipschitz-Killing valuations stabilize the subspace of invariant angular curvature measures, suggesting the possibility that a similar phenomenon holds for all Riemannian manifolds. We conclude with a number of open questions and conjectures.Comment: 68 pages; minor change

    Dynamic characteristics and processing of fillers in polyurethane elastomers for vibration damping applications

    Get PDF
    Polyurethane elastomers have the potential of being used to reduce vibrational noise in many engineering applications. The performance of the elastomer is directly related to matching the nature of the mechanical loss characteristics to the frequency and temperature dependence of the source of the vibration. Materials with a broad frequency response and good mechanical properties are desirable for situations were load bearing and isolation becomes an issue. Because automobile, and other related vehicles operate over a broad temperature range, it is desirable for the damping characteristics of the elastomer to ideally be independent of temperature and frequency. In practice, this is not possible and the creation of materials with a broad spectrum response is desirable. In this paper, the effects of various fillers on the breadth and temperature dependence of the vibration damping characteristics of a filled and crosslinked polyurethane elastomer are explored. The fillers studied are wollastonite, barium sulphate and talc. These materials have different shapes, sizes and surface chemistry and undergo different types of interaction with the matrix. The vibration damping characteristics were further varied by the use of a crosslinking agent. Data presented on the rheological characteristics indicate the strength of the filler-polyol interactions. Dielectric relaxation and dynamic mechanical thermal analysis demonstrate the way in which changes in the type of filler, concentration and amount of crosslinker lead to changes in the location and breadth of the energy dissipation process in these elastomers. The vibration damping characteristics of a selected material are presented to demonstrate the potential of these materials

    Reflection high-energy electron diffraction studies of the growth of lnAs/Ga_(1-x)In_xSb strained-layer superlattices

    Get PDF
    We have used reflection high‐energy electron diffraction to study the surface periodicity of the growth front of InAs/GaInSb strained‐layer superlattices (SLSs). We found that the apparent surface lattice spacing reproducibly changed during layers which subsequent x‐ray measurements indicated were coherently strained. Abrupt changes in the measured streak spacings were found to be correlated to changes in the growth flux. The profile of the dynamic streak spacing was found to be reproducible when comparing consecutive periods of a SLSs or different SLSs employing the same shuttering scheme at the InAs/GaInSb interface. Finally, when the interface shuttering scheme was changed, it was found that the dynamic streak separation profile also changed. Large changes in the shuttering scheme led to dramatic differences in the streak separation profile, and small changes in the shuttering scheme led to minor changes in the profile. In both cases, the differences in the surface periodicity profile occurred during the parts of the growth where the incident fluxes differed

    Ab-initio GMR and current-induced torques in Au/Cr multilayers

    Full text link
    We report on an {\em ab-initio} study of giant magnetoresistance (GMR) and current-induced-torques (CITs) in Cr/Au multilayers that is based on non-equilibrium Green's functions and spin density functional theory. We find substantial GMR due primarily to a spin-dependent resonance centered at the Cr/Au interface and predict that the CITs are strong enough to switch the antiferromagnetic order parameter at current-densities 100\sim 100 times smaller than typical ferromagnetic metal circuit switching densities.Comment: 8 pages, 6 figure

    Determining the strange and antistrange quark distributions of the nucleon

    Full text link
    The difference between the strange and antistrange quark distributions, \delta s(x)=s(x)-\sbar(x), and the combination of light quark sea and strange quark sea, \Delta (x)=\dbar(x)+\ubar(x)-s(x)-\sbar(x), are originated from non-perturbative processes, and can be calculated using non-perturbative models of the nucleon. We report calculations of δs(x)\delta s(x) and Δ(x)\Delta(x) using the meson cloud model. Combining our calculations of Δ(x)\Delta(x) with relatively well known light antiquark distributions obtained from global analysis of available experimental data, we estimate the total strange sea distributions of the nucleon.Comment: 4 pages, 3 figures; talk given by F.-G. at QNP0

    Estimating Form Factors of BsDs()B_s\rightarrow D_s^{(*)} and their Applications to Semi-leptonic and Non-leptonic Decays

    Full text link
    Bs0DsB_s^0\rightarrow D_s^{-} and Bs0DsB_s^0\rightarrow D_s^{*-} weak transition form factors are estimated for the whole physical region with a method based on an instantaneous approximated Mandelstam formulation of transition matrix elements and the instantaneous Bethe-Salpeter equation. We apply the estimated form factors to branching ratios, CP asymmetries and polarization fractions of non-leptonic decays within the factorization approximation. And we study the non-factorizable effects and annihilation contributions with the perturbative QCD approach. The branching ratios of semi-leptonic Bs0Ds()l+νlB_s^0\rightarrow D_s^{(*)-}l^+\nu_l decays are also evaluated. We show that the calculated decay rates agree well with the available experimental data. The longitudinal polarization fraction of BsDsV(A)B_s\rightarrow D_s^*V(A) decays are 0.8\sim0.8 when V(A)V(A) denotes a light meson, and are 0.5\sim0.5 when V(A)V(A) denotes a DqD_q (q=d,sq=d,s) meson.Comment: Final version published in J Phys. G 39 (2012) 045002 (Title also changed
    corecore