25 research outputs found
Insight into Two ABC Transporter Families Involved in Lantibiotic Resistance
Antimicrobial peptides, which contain (methyl)-lanthionine-rings are called lantibiotics. They are produced by several Gram-positive bacteria and are mainly active against these bacteria. Although these are highly potent antimicrobials, some human pathogenic bacteria express specific ABC transporters that confer resistance and counteract their antimicrobial activity. Two distinct ABC transporter families are known to be involved in this process. These are the Cpr- and Bce-type ABC transporter families, named after their involvement in cationic peptide resistance in Clostridium difficile, and bacitracin efflux in Bacillus subtilis, respectively. Both resistance systems differentiate to each other in terms of the proteins involved. Here, we summarize the current knowledge and describe the divergence as well as the common features present in both the systems to confer lantibiotic resistance
THE ORIGIN OF THE HELICAL TWIST INVERSION IN SINGLE-COMPONENT CHOLESTERIC LIQUID-CRYSTALS
The cholesteric twist inversion by temperature variation of a single component thermotropic liquid crystalline system was experimentally investigated and is explained by the partial twisting power model, evaluating the temperature dependent pitch of five different configurations of a benzoic acid biphenyl ester with two chiral centers. The temperature dependence of the twisting power and the cholesteric pitch for several stereoisomeric compounds can in first approximation be predicted by the partial twisting powers of the individual chiral centers determined from the partially racemic configurations
The N-terminal Region of Nisin Is Important for the BceAB-Type ABC Transporter NsrFP from Streptococcus agalactiae COH1
Lantibiotics are (methyl)-lanthionine-containing antimicrobial peptides produced by several Gram-positive bacteria. Some human pathogenic bacteria express specific resistance proteins that counteract this antimicrobial activity of lantibiotics. In Streptococcus agalactiae COH1 resistance against the well-known lantibiotic nisin is conferred by, the nisin resistance protein (NSR), a two-component system (NsrRK) and a BceAB-type ATP-binding cassette (ABC) transporter (NsrFP). The present study focuses on elucidating the function of NsrFP via its heterologous expression in Lactococcus lactis. NsrFP is able to confer a 16-fold resistance against wild type nisin as determined by growth inhibition experiments and functions as a lantibiotic exporter. Several C-terminal nisin mutants indicated that NsrFP recognizes the N-terminal region of nisin. The N-terminus harbors three (methyl)-lanthionine rings, which are conserved in other lantibiotics
Small-molecule inhibitors of nisin resistance protein NSR from the human pathogen Streptococcus agalactiae
Lantibiotics are antimicrobial peptides produced by Gram-positive bacteria and active in the nanomolar range. Nisin is the most intensely studied and used lantibiotic, with applications as food preservative and recognized potential for clinical usage. However, different bacteria that are pathogenic for humans and do not produce nisin, including Streptococcus agalactiae, show an innate resistance that has been related to the nisin resistance protein (NSR), a membrane-associated protease. Here, we report the first-in-class small-molecule inhibitors of SaNSR identified by virtual screening based on a previously derived structural model of the nisin/NSR complex. The inhibitors belong to three different chemotypes, of which the halogenated phenyl-urea derivative NPG9 is the most potent one. Co-administration of NPG9 with nisin yields increased potency compared to nisin alone in SaNSR-expressing bacteria. The binding mode of NPG9, predicted with molecular docking and validated by extensive molecular dynamics simulations, confirms a structure-activity relationship derived from the in vivo data. Saturation transfer difference-NMR experiments demonstrate direct binding of NPG9 to SaNSR and agree with the predicted binding mode. Our results demonstrate the potential to overcome SaNSR-related lantibiotic resistance by small molecules
Proteomic Adaptation of Clostridioides difficile to Treatment with the Antimicrobial Peptide Nisin
Clostridioides difficile is the leading cause of antibiotic-associated diarrhea but can also result in more serious, life-threatening conditions. The incidence of C. difficile infections in hospitals is increasing, both in frequency and severity, and antibiotic-resistant C. difficile strains are advancing. Against this background antimicrobial peptides (AMPs) are an interesting alternative to classic antibiotics. Information on the effects of AMPs on C. difficile will not only enhance the knowledge for possible biomedical application but may also provide insights into mechanisms of C. difficile to adapt or counteract AMPs. This study applies state-of-the-art mass spectrometry methods to quantitatively investigate the proteomic response of C. difficile 630∆erm to sublethal concentrations of the AMP nisin allowing to follow the cellular stress adaptation in a time-resolved manner. The results do not only point at a heavy reorganization of the cellular envelope but also resulted in pronounced changes in central cellular processes such as carbohydrate metabolism. Further, the number of flagella per cell was increased during the adaptation process. The potential involvement of flagella in nisin adaptation was supported by a more resistant phenotype exhibited by a non-motile but hyper-flagellated mutant