393 research outputs found

    Free Niagara -- Prospect Point, Winter

    Get PDF
    The stereograph features a black and white image of men and women standing along Prospect Point, looking over the railing at the falls below. The image is mounted on a gray card with rounded edges.https://scholarsjunction.msstate.edu/fvw-artifacts/1600/thumbnail.jp

    Niagara: The Coral Arch

    Get PDF
    The stereograph features a black and white image of two women posing with the ice-covered Coral Arch. The image is mounted on a gray card with rounded edges.https://scholarsjunction.msstate.edu/fvw-photographs/1238/thumbnail.jp

    Free Niagara -- Prospect Point, Winter

    Get PDF
    The stereograph features a black and white image of men and women standing along Prospect Point, looking over the railing at the falls below. The image is mounted on a gray card with rounded edges.https://scholarsjunction.msstate.edu/fvw-photographs/1286/thumbnail.jp

    Optical interconnect with densely integrated plasmonic modulator and germanium photodetector arrays

    Get PDF
    We demonstrate the first chip-to-chip interconnect utilizing a densely integrated plasmonic Mach-Zehnder modulator array operating at 3 x 10 Gbit/s. A multicore fiber provides a compact optical interface, while the receiver consists of germanium photodetectors

    Optical interconnect solution with plasmonic modulator and Ge photodetector array

    Get PDF
    We report on an optical chip-to-chip interconnect solution, thereby demonstrating plasmonics as a solution for ultra-dense, high-speed short-reach communications. The interconnect comprises a densely integrated plasmonic Mach-Zehnder modulator array that is packaged with standard driving electronics. On the receiver side, a germanium photodetector array is integrated with trans-impedance amplifiers. A multicore fiber provides a compact optical interface to the array. We demonstrate 4 × 20 Gb/s on-off keying signaling with direct detection.ISSN:1041-1135ISSN:1941-017

    Microarray-based transcriptional profiling of Eimeria bovis-infected bovine endothelial host cells

    Get PDF
    Within its life cycle Eimeria bovis undergoes a long lasting intracellular development into large macromeronts in endothelial cells. Since little is known about the molecular basis of E. bovis-triggered host cell regulation we applied a microarray-based approach to define transcript variation in bovine endothelial cells early after sporozoite invasion (4 h post inoculation (p.i.)), during trophozoite establishment (4 days p.i.), during early parasite proliferation (8 days p.i.) and towards macromeront maturation (14 days p.i.). E. bovis infection led to significant changes in the abundance of many host cell gene transcripts. As infection progressed, the number of regulated genes increased such that 12, 45, 175 and 1184 sequences were modulated at 4 h, 4, 8 and 14 days p.i., respectively. These genes significantly interfered with several host cell functions, networks and canonical pathways, especially those involved in cellular development, cell cycle, cell death, immune response and metabolism. The correlation between stage of infection and the number of regulated genes involved in different aspects of metabolism suggest parasite-derived exploitation of host cell nutrients. The modulation of genes involved in cell cycle arrest and host cell apoptosis corresponds to morphological in vitro findings and underline the importance of these aspects for parasite survival. Nevertheless, the increasing numbers of modulated transcripts associated with immune responses also demonstrate the defensive capacity of the endothelial host cell. Overall, this work reveals a panel of novel candidate genes involved in E. bovis-triggered host cell modulation, providing a valuable tool for future work on this topic

    Effects of acute bouts of endurance exercise on retinal vessel diameters are age and intensity dependent

    Get PDF
    Alterations of retinal vessel diameters are associated with increased cardiovascular risk. We aimed to investigate changes in retinal vessel diameters in response to acute dynamic exercise of different intensities and whether these changes are age dependent. Seventeen healthy seniors (median (IQR) age 68 (65, 69) years) and 15 healthy young adults (median (IQR) age 26 (25, 28) years) first performed a maximal treadmill test (MTT) followed by a submaximal treadmill test (SMTT) and a resting control condition in randomised order. Central retinal arteriolar (CRAE) and central retinal venular (CRVE) diameter equivalents were measured before as well as 5 (t5) and 40 (t40) minutes after exercise cessation using a static retinal vessel analyser. Both exercise intensities induced a significant dilatation in CRAE and CRVE at t5 compared to the control condition (P < 0.001). At t40, the mean increase in CRAE and CRVE was greater for MTT compared to that for SMTT (CRAE 1.7μm (95% confidence interval (CI) −0.1, 3.6; P = 0.061); CRVE 2.2μm (95% CI 0.4, 4.1; P = 0.019)). However, the estimated difference at t5 between seniors and young adults in their response to MTT compared to SMTT was 5.3μm (95% CI 2.0, 8.5; P = 0.002) for CRAE and 4.1μm (95% CI −0.4, 8.6; P = 0.076) for CRVE. Wider arteries and veins after maximal versus submaximal exercise for seniors compared to young adults suggest that myogenic vasoconstriction in response to exhaustive exercise may be reduced in seniors. Age-related loss of vascular reactivity has clinical implications since the arteriolar vasoconstriction protects the retinal capillary bed from intraluminal pressure peaks

    Sphingosine 1-phosphate modulates antigen capture by murine langerhans cells via the S1P2 receptor subtype

    Get PDF
    Dendritic cells (DCs) play a pivotal role in the development of cutaneous contact hypersensitivity (CHS) and atopic dermatitis as they capture and process antigen and present it to T lymphocytes in the lymphoid organs. Recently, it has been indicated that a topical application of the sphingolipid sphingosine 1-phosphate (S1P) prevents the inflammatory response in CHS, but the molecular mechanism is not fully elucidated. Here we indicate that treatment of mice with S1P is connected with an impaired antigen uptake by Langerhans cells (LCs), the initial step of CHS. Most of the known actions of S1P are mediated by a family of five specific G protein-coupled receptors. Our results indicate that S1P inhibits macropinocytosis of the murine LC line XS52 via S1P2 receptor stimulation followed by a reduced phosphatidylinositol 3-kinase (PI3K) activity. As down-regulation of S1P2 not only diminished S1P-mediated action but also enhanced the basal activity of LCs on antigen capture, an autocrine action of S1P has been assumed. Actually, S1P is continuously produced by LCs and secreted via the ATP binding cassette transporter ABCC1 to the extracellular environment. Consequently, inhibition of ABCC1, which decreased extracellular S1P levels, markedly increased the antigen uptake by LCs. Moreover, stimulation of sphingosine kinase activity, the crucial enzyme for S1P formation, is connected not only with enhanced S1P levels but also with diminished antigen capture. These results indicate that S1P is essential in LC homeostasis and influences skin immunity. This is of importance as previous reports suggested an alteration of S1P levels in atopic skin lesions
    corecore