935 research outputs found

    Testing the Empirical Shock Arrival Model using Quadrature Observations

    Full text link
    The empirical shock arrival (ESA) model was developed based on quadrature data from Helios (in-situ) and P-78 (remote-sensing) to predict the Sun-Earth travel time of coronal mass ejections (CMEs) [Gopalswamy et al. 2005a]. The ESA model requires earthward CME speed as input, which is not directly measurable from coronagraphs along the Sun-Earth line. The Solar Terrestrial Relations Observatory (STEREO) and the Solar and Heliospheric Observatory (SOHO) were in quadrature during 2010 - 2012, so the speeds of Earth-directed CMEs were observed with minimal projection effects. We identified a set of 20 full halo CMEs in the field of view of SOHO that were also observed in quadrature by STEREO. We used the earthward speed from STEREO measurements as input to the ESA model and compared the resulting travel times with the observed ones from L1 monitors. We find that the model predicts the CME travel time within about 7.3 hours, which is similar to the predictions by the ENLIL model. We also find that CME-CME and CME-coronal hole interaction can lead to large deviations from model predictions.Comment: 17 pages, 4 figures, 3 table

    A Hierarchical Relationship between the Fluence Spectra and CME Kinematics in Large Solar Energetic Particle Events: A Radio Perspective

    Full text link
    We report on further evidence that solar energetic particles are organized by the kinematic properties of coronal mass ejections (CMEs)[1]. In particular, we focus on the starting frequency of type II bursts, which is related to the distance from the Sun where the radio emission starts. We find that the three groups of solar energetic particle (SEP) events known to have distinct values of CME initial acceleration, also have distinct average starting frequencies of the associated type II bursts. SEP events with ground level enhancement (GLE) have the highest starting frequency (107 MHz), while those associated with filament eruption (FE) in quiescent regions have the lowest starting frequency (22 MHz); regular SEP events have intermediate starting frequency (81 MHz). Taking the onset time of type II bursts as the time of shock formation, we determine the shock formation heights measured from the Sun center. We find that the shocks form on average closest to the Sun (1.51 Rs) in GLE events, farthest from the Sun in FE SEP events (5.38 Rs), and at intermediate distances in regular SEP events (1.72 Rs). Finally, we present the results of a case study of a CME with high initial acceleration (~3 km s^-2) and a type II radio burst with high starting frequency (~200 MHz) but associated with a minor SEP event. We find that the relation between the fluence spectral index and CME initial acceleration continues to hold even for this minor SEP event.Comment: 11 pages, 7 figures, 1 table, to appear in Journal of Physics: Conference Series (JPCS), Proceedings of the 16th Annual International Astrophysics Conference held in Santa Fe, NM, 201

    The Peculiar Behavior of Halo Coronal Mass Ejections in Solar Cycle 24

    Full text link
    We report on a remarkable finding that the halo coronal mass ejections (CMEs) in cycle 24 are more abundant than in cycle 23, although the sunspot number in cycle 24 has dropped by about 40%. We also find that the distribution of halo-CME source locations is different in cycle 24: the longitude distribution of halos is much flatter with the number of halos originating at central meridian distance >/=60 degrees twice as large as that in cycle 23. On the other hand, the average speed and the associated soft X-ray flare size are the same in the two cycles, suggesting that the ambient medium into which the CMEs are ejected is significantly different. We suggest that both the higher abundance and larger central meridian longitudes of halo CMEs can be explained as a consequence of the diminished total pressure in the heliosphere in cycle 24 (Gopalswamy et al. 2014). The reduced total pressure allows CMEs expand more than usual making them appear as halos.Comment: 12 pages, 5 figures, accepted for publication in the Astrophysical Journal Letters, April 7, 201

    The First Ground Level Enhancement Event of Solar Cycle 24: Direct Observation of Shock Formation and Particle Release Heights

    Full text link
    We report on the 2012 May 17 Ground Level Enhancement (GLE) event, which is the first of its kind in Solar Cycle 24. This is the first GLE event to be fully observed close to the surface by the Solar Terrestrial Relations Observatory (STEREO) mission. We determine the coronal mass ejection (CME) height at the start of the associated metric type II radio burst (i.e., shock formation height) as 1.38 Rs (from the Sun center). The CME height at the time of GLE particle release was directly measured from a STEREO image as 2.32 Rs, which agrees well with the estimation from CME kinematics. These heights are consistent with those obtained for cycle-23 GLEs using back-extrapolation. By contrasting the 2012 May 17 GLE with six other non-GLE eruptions from well-connected regions with similar or larger flare size and CME speed, we find that the latitudinal distance from the ecliptic is rather large for the non-GLE events due to a combination of non-radial CME motion and unfavorable solar B0 angle, making the connectivity to Earth poorer. We also find that the coronal environment may play a role in deciding the shock strength.Comment: 16 pages, 4 figures, 1 tabl

    Ground Level Enhancement in the 2014 January 6 Solar Energetic Particle Event

    Get PDF
    We present a study of the 2014 January 6 solar energetic particle (SEP) event, which produced a small ground level enhancement (GLE), making it the second GLE of this unusual solar cycle 24. This event was primarily observed by the South Pole neutron monitors (increase of ~2.5%) whereas a few other neutron monitors recorded smaller increases. The associated coronal mass ejection (CME) originated behind the western limb and had the speed of 1960 km/s. The height of the CME at the start of the associated metric type II radio burst, which indicates the formation of a strong shock, was measured to be 1.61 Rs using a direct image from STEREO-A/EUVI. The CME height at the time of GLE particle release (determined using the South Pole neutron monitor data) was directly measured as 2.96 Rs, from the STEREO-A/COR1 white-light observations. These CME heights are consistent with those obtained for the GLE71, the only other GLE of the current cycle as well as cycle-23 GLEs derived using back-extrapolation. GLE72 is of special interest because it is one of the only two GLEs of cycle 24, one of the two behind-the-limb GLEs and one of the two smallest GLEs of cycles 23 and 24

    Coronal Flux Ropes and their Interplanetary Counterparts

    Full text link
    We report on a study comparing coronal flux ropes inferred from eruption data with their interplanetary counterparts constructed from in situ data. The eruption data include the source-region magnetic field, post-eruption arcades, and coronal mass ejections (CMEs). Flux ropes were fit to the interplanetary CMEs (ICMEs) considered for the 2011 and 2012 Coordinated Data Analysis Workshops (CDAWs). We computed the total reconnected flux involved in each of the associated solar eruptions and found it to be closely related to flare properties, CME kinematics, and ICME properties. By fitting flux ropes to the white-light coronagraph data, we obtained the geometric properties of the flux ropes and added magnetic properties derived from the reonnected flux. We found that the CME magnetic field in the corona is significantly higher than the ambient magnetic field at a given heliocentric distance. The radial dependence of the flux-rope magnetic field strength is faster than that of the ambient magnetic field. The magnetic field strength of the coronal flux rope is also correlated with that in interplanetary flux ropes constructed from in situ data, and with the observed peak magnetic field strength in ICMEs. The physical reason for the observed correlation between the peak field strength in MCs is the higher magnetic field content in faster coronal flux ropes and ultimately the higher reconnected flux in the eruption region. The magnetic flux ropes constructed from the eruption data and coronagraph observations provide a realistic input that can be used by various models to predict the magnetic properties of ICMEs at Earth and other destination in the heliosphere.Comment: 36 pages, 8 figures, 1 table, under review in J. Atmos. Solar-Terr. Phys. May 24, 201
    corecore