392 research outputs found

    Generation of Neuronal Diversity: Analogies and Homologies with Hematopoiesis

    Get PDF
    The immense variety of neuronal phenotypes in the vertebrate nervous system is apparent in considering just the process of chemical transmission. There are approximately 12 known classical neurotransmitters and more than 30 neuropeptides thus far identified, and individual neurons simultaneously synthesize, store, and secrete one or more classical transmitters in addition to three or more neuropeptides. The transmitters and peptides are expressed in an exceedingly large number of different combinations in different parts of the nervous system. Although there are useful generalizations as to the frequency of certain transmitter-peptide combinations, there are innumerable exceptions to these rules. How the particular combinations produced in each neuron are specified during development is a challenging question. The magnitude of this problem becomes clear if one calculates the number of possible combinations if a neuron is to produce 2 transmitters out of a possible 12 and 3 peptides out of a possible 30. There are 267,960 different potential phenotypes in this example

    Aluminum Hard Mask Technique for the Fabrication of High-Quality Submicron Nb/Al-AlOx/Nb Josephson Junctions

    Full text link
    We have developed a combined photolithography and electron-beam lithography fabrication process for sub-\mum to \mum-size Nb/Al-AlOx/Nb Josephson junctions. In order to define the junction size and protect its top electrode during anodic oxidation, we developed and used the new concept of an aluminum hard mask. Josephson junctions of sizes down to 0.5 \mum2 have been fabricated and thoroughly characterized. We found that they have a very high quality, which is witnessed by the IV curves with quality parameters Vm > 50 mV and Vgap = 2.8 mV at 4.2 K, as well as IcRN products of 1.75-1.93 mV obtained at lower temperatures. In order to test the usability of our fabrication process for superconducting quantum bits, we have also designed, fabricated and experimentally investigated phase qubits made of these junctions. We found a relaxation time of T1 = 26 ns and a dephasing time of T2 = 21 ns

    Structural analysis of three novel trisaccharides isolated from the fermented beverage of plant extracts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A fermented beverage of plant extracts was prepared from about fifty kinds of vegetables and fruits. Natural fermentation was carried out mainly by lactic acid bacteria (<it>Leuconostoc </it>spp.) and yeast (<it>Zygosaccharomyces </it>spp. and <it>Pichia </it>spp.). We have previously examined the preparation of novel four trisaccharides from the beverage: <it>O</it>-Ξ²-D-fructopyranosyl-(2->6)-<it>O</it>-Ξ²-D-glucopyranosyl-(1->3)-D-glucopyranose, <it>O</it>-Ξ²-D-fructopyranosyl-(2->6)-<it>O</it>-[Ξ²-D-glucopyranosyl-(1->3)]-D-glucopyranose, <it>O</it>-Ξ²-D-glucopyranosyl-(1->1)-<it>O</it>-Ξ²-D-fructofuranosyl-(2<->1)-Ξ±-D-glucopyranoside and <it>O</it>-Ξ²-D-galactopyranosyl-(1->1)-<it>O</it>-Ξ²-D-fructofuranosyl-(2<->1)- Ξ±-D-glucopyranoside.</p> <p>Results</p> <p>Three further novel oligosaccharides have been found from this beverage and isolated from the beverage using carbon-Celite column chromatography and preparative high performance liquid chromatography. Structural confirmation of the saccharides was provided by methylation analysis, MALDI-TOF-MS and NMR measurements.</p> <p>Conclusion</p> <p>The following novel trisaccharides were identified: <it>O</it>-Ξ²-D-fructofuranosyl-(2->1)-<it>O</it>-[Ξ²-D-glucopyranosyl-(1->3)]-Ξ²-D-glucopyranoside (named "3<sup>G</sup>-Ξ²-D-glucopyranosyl Ξ², Ξ²-isosucrose"), <it>O</it>-Ξ²-D-glucopyranosyl-(1->2)-<it>O</it>-[Ξ²-D-glucopyranosyl-(1->4)]-D-glucopyranose (4<sup>1</sup>-Ξ²-D-glucopyranosyl sophorose) and <it>O</it>-Ξ²-D-fructofuranosyl-(2->6)-<it>O</it>-Ξ²-D-glucopyranosyl-(1->3)-D-glucopyranose (6<sup>2</sup>-Ξ²-D-fructofuranosyl laminaribiose).</p

    Ozone profiles in the high-latitude stratosphere and lower mesosphere measured by the Improved Limb Atmospheric Spectrometer (ILAS)-II: comparison with other satellite sensors and ozonesondes

    Get PDF
    A solar occultation sensor, the Improved Limb Atmospheric Spectrometer (ILAS)-II, measured 5890 vertical profiles of ozone concentrations in the stratosphere and lower mesosphere and of other species from January to October 2003. The measurement latitude coverage was 54–71Β°N and 64–88Β°S, which is similar to the coverage of ILAS (November 1996 to June 1997). One purpose of the ILAS-II measurements was to continue such high-latitude measurements of ozone and its related chemical species in order to help accurately determine their trends. The present paper assesses the quality of ozone data in the version 1.4 retrieval algorithm, through comparisons with results obtained from comprehensive ozonesonde measurements and four satellite-borne solar occultation sensors. In the Northern Hemisphere (NH), the ILAS-II ozone data agree with the other data within Β±10% (in terms of the absolute difference divided by its mean value) at altitudes between 11 and 40 km, with the median coincident ILAS-II profiles being systematically up to 10% higher below 20 km and up to 10% lower between 21 and 40 km after screening possible suspicious retrievals. Above 41 km, the negative bias between the NH ILAS-II ozone data and the other data increases with increasing altitude and reaches 30% at 61–65 km. In the Southern Hemisphere, the ILAS-II ozone data agree with the other data within Β±10% in the altitude range of 11–60 km, with the median coincident profiles being on average up to 10% higher below 20 km and up to 10% lower above 20 km. Considering the accuracy of the other data used for this comparative study, the version 1.4 ozone data are suitably used for quantitative analyses in the high-latitude stratosphere in both the Northern and Southern Hemisphere and in the lower mesosphere in the Southern Hemisphere

    The acute effects of cannabidiol on emotional processing and anxiety: a neurocognitive imaging study

    Get PDF
    Rationale: There is growing interest in the therapeutic potential of cannabidiol (CBD) across a range of psychiatric disorders. CBD has been found to reduce anxiety during experimentally induced stress in anxious individuals and healthy controls. However, the mechanisms underlying the putative anxiolytic effects of CBD are unknown. // Objectives: We sought to investigate the behavioural and neural effects of a single dose of CBD vs. placebo on a range of emotion-related measures to test cognitive-mechanistic models of its effects on anxiety. // Methods: We conducted a randomised, double-blind, placebo-controlled, crossover, acute oral challenge of 600 mg of CBD in 24 healthy participants on emotional processing, with neuroimaging (viewing emotional faces during functional magnetic resonance imaging) and cognitive (emotional appraisal) measures as well as subjective response to experimentally induced anxiety. // Results: CBD did not produce effects on brain responses to emotional faces and cognitive measures of emotional processing, or modulate experimentally induced anxiety, relative to placebo. // Conclusions: Given the rising popularity of CBD for its putative medical benefits, these findings question whether further research is warranted to investigate the clinical potential of CBD for the treatment of anxiety disorders

    The acute effects of cannabidiol on the neural correlates of reward anticipation and feedback in healthy volunteers

    Get PDF
    Background: Cannabidiol has potential therapeutic benefits for people with psychiatric disorders characterised by reward function impairment. There is existing evidence that cannabidiol may influence some aspects of reward processing. However, it is unknown whether cannabidiol acutely affects brain function underpinning reward anticipation and feedback. Hypotheses: We predicted that cannabidiol would augment brain activity associated with reward anticipation and feedback. Methods: We administered a single 600 mg oral dose of cannabidiol and matched placebo to 23 healthy participants in a double-blind, placebo-controlled, repeated-measures design. We employed the monetary incentive delay task during functional magnetic resonance imaging to assay the neural correlates of reward anticipation and feedback. We conducted whole brain analyses and region-of-interest analyses in pre-specified reward-related brain regions. Results: The monetary incentive delay task elicited expected brain activity during reward anticipation and feedback, including in the insula, caudate, nucleus accumbens, anterior cingulate and orbitofrontal cortex. However, across the whole brain, we did not find any evidence that cannabidiol altered reward-related brain activity. Moreover, our Bayesian analyses showed that activity in our regions-of-interest was similar following cannabidiol and placebo. Additionally, our behavioural measures of motivation for reward did not show a significant difference between cannabidiol and placebo. Discussion: Cannabidiol did not acutely affect the neural correlates of reward anticipation and feedback in healthy participants. Future research should explore the effects of cannabidiol on different components of reward processing, employ different doses and administration regimens, and test its reward-related effects in people with psychiatric disorders

    Multisensory information facilitates reaction speed by enlarging activity difference between superior colliculus hemispheres in rats

    Get PDF
    Animals can make faster behavioral responses to multisensory stimuli than to unisensory stimuli. The superior colliculus (SC), which receives multiple inputs from different sensory modalities, is considered to be involved in the initiation of motor responses. However, the mechanism by which multisensory information facilitates motor responses is not yet understood. Here, we demonstrate that multisensory information modulates competition among SC neurons to elicit faster responses. We conducted multiunit recordings from the SC of rats performing a two-alternative spatial discrimination task using auditory and/or visual stimuli. We found that a large population of SC neurons showed direction-selective activity before the onset of movement in response to the stimuli irrespective of stimulation modality. Trial-by-trial correlation analysis showed that the premovement activity of many SC neurons increased with faster reaction speed for the contraversive movement, whereas the premovement activity of another population of neurons decreased with faster reaction speed for the ipsiversive movement. When visual and auditory stimuli were presented simultaneously, the premovement activity of a population of neurons for the contraversive movement was enhanced, whereas the premovement activity of another population of neurons for the ipsiversive movement was depressed. Unilateral inactivation of SC using muscimol prolonged reaction times of contraversive movements, but it shortened those of ipsiversive movements. These findings suggest that the difference in activity between the SC hemispheres regulates the reaction speed of motor responses, and multisensory information enlarges the activity difference resulting in faster responses
    • …
    corecore