2,058 research outputs found

    An experimental study on Γ\Gamma(2) modular symmetry in the quantum Hall system with a small spin-splitting

    Full text link
    Magnetic-field-induced phase transitions were studied with a two-dimensional electron AlGaAs/GaAs system. The temperature-driven flow diagram shows the features of the Γ\Gamma(2) modular symmetry, which includes distorted flowlines and shiftted critical point. The deviation of the critical conductivities is attributed to a small but resolved spin splitting, which reduces the symmetry in Landau quantization. [B. P. Dolan, Phys. Rev. B 62, 10278.] Universal scaling is found under the reduction of the modular symmetry. It is also shown that the Hall conductivity could still be governed by the scaling law when the semicircle law and the scaling on the longitudinal conductivity are invalid. *corresponding author:[email protected]: The revised manuscript has been published in J. Phys.: Condens. Matte

    Effects of Zeeman spin splitting on the modular symmetry in the quantum Hall effect

    Full text link
    Magnetic-field-induced phase transitions in the integer quantum Hall effect are studied under the formation of paired Landau bands arising from Zeeman spin splitting. By investigating features of modular symmetry, we showed that modifications to the particle-hole transformation should be considered under the coupling between the paired Landau bands. Our study indicates that such a transformation should be modified either when the Zeeman gap is much smaller than the cyclotron gap, or when these two gaps are comparable.Comment: 8 pages, 4 figure

    Spin-dependent thermoelectric transport through double quantum dots

    Full text link
    We study thermoelectric transport through double quantum dots system with spin-dependent interdot coupling and ferromagnetic electrodes by means of the non-equilibrium Green function in the linear response regime. It is found that the thermoelectric coefficients are strongly dependent on the splitting of interdot coupling, the relative magnetic configurations and the spin polarization of leads. In particular, the thermoelectric efficiency can achieve considerable value in parallel configuration when the effective interdot coupling and tunnel coupling between QDs and the leads for spin-down electrons are small. Moreover, the thermoelectric efficiency increases with the intradot Coulomb interactions increasing and can reach very high value at an appropriate temperature. In the presence of the magnetic field, the spin accumulation in leads strongly suppresses the thermoelectric efficiency and a pure spin thermopower can be obtained.Comment: 5 figure

    Experimental Studies of Low-field Landau Quantization in Two-dimensional Electron Systems in GaAs/AlGaAs Heterostructures

    Full text link
    By applying a magnetic field perpendicular to GaAs/AlGaAs two-dimensional electron systems, we study the low-field Landau quantization when the thermal damping is reduced with decreasing the temperature. Magneto-oscillations following Shubnikov-de Haas (SdH) formula are observed even when their amplitudes are so large that the deviation to such a formula is expected. Our experimental results show the importance of the positive magneto-resistance to the extension of SdH formula under the damping induced by the disorder.Comment: 9 pages, 3 figure

    Cold Nuclear Matter In Holographic QCD

    Full text link
    We study the Sakai-Sugimoto model of holographic QCD at zero temperature and finite chemical potential. We find that as the baryon chemical potential is increased above a critical value, there is a phase transition to a nuclear matter phase characterized by a condensate of instantons on the probe D-branes in the string theory dual. As a result of electrostatic interactions between the instantons, this condensate expands towards the UV when the chemical potential is increased, giving a holographic version of the expansion of the Fermi surface. We argue based on properties of instantons that the nuclear matter phase is necessarily inhomogeneous to arbitrarily high density. This suggests an explanation of the "chiral density wave" instability of the quark Fermi surface in large N_c QCD at asymptotically large chemical potential. We study properties of the nuclear matter phase as a function of chemical potential beyond the transition and argue in particular that the model can be used to make a semi-quantitative prediction of the binding energy per nucleon for nuclear matter in ordinary QCD.Comment: 31 pages, LaTeX, 1 figure, v2: some formulae corrected, qualitative results unchange

    Deformations of the hemisphere that increase scalar curvature

    Full text link
    Consider a compact Riemannian manifold M of dimension n whose boundary \partial M is totally geodesic and is isometric to the standard sphere S^{n-1}. A natural conjecture of Min-Oo asserts that if the scalar curvature of M is at least n(n-1), then M is isometric to the hemisphere S_+^n equipped with its standard metric. This conjecture is inspired by the positive mass theorem in general relativity, and has been verified in many special cases. In this paper, we construct counterexamples to Min-Oo's conjecture in dimension n \geq 3.Comment: Revised version, to appear in Invent. Mat

    Electronic and phononic states of the Holstein-Hubbard dimer of variable length

    Full text link
    We consider a model Hamiltonian for a dimer including all the electronic one- and two-body terms consistent with a single orbital per site, a free Einstein phonon term, and an electron-phonon coupling of the Holstein type. The bare electronic interaction parameters were evaluated in terms of Wannier functions built from Gaussian atomic orbitals. An effective polaronic Hamiltonian was obtained by an unrestricted displaced-oscillator transformation, followed by evaluation of the phononic terms over a squeezed-phonon variational wave function. For the cases of quarter-filled and half-filled orbital, and over a range of dimer length values, the ground state was identified by simultaneously and independently optimizing the orbital shape, the phonon displacement and the squeezing effect strength. As the dimer length varies, we generally find discontinuous changes of both electronic and phononic states, accompanied by an appreciable renormalization of the effective electronic interactions across the transitions, due to the equilibrium shape of the wave functions strongly depending on the phononic regime and on the type of ground state.Comment: 11 pages, RevTeX, 10 PostScript figures; to appear in Phys. Rev.

    Classification of Widely and Rarely Expressed Genes with Recurrent Neural Network

    Get PDF
    A tissue-specific gene expression shapes the formation of tissues, while gene expression changes reflect the immune response of the human body to environmental stimulations or pressure, particularly in disease conditions, such as cancers. A few genes are commonly expressed across tissues or various cancers, while others are not. To investigate the functional differences between widely and rarely expressed genes, we defined the genes that were expressed in 32 normal tissues/cancers (i.e., called widely expressed genes; FPKM >1 in all samples) and those that were not detected (i.e., called rarely expressed genes; FPKM <1 in all samples) based on the large gene expression data set provided by Uhlen et al. Each gene was encoded using the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment scores. Minimum redundancy maximum relevance (mRMR) was used to measure and rank these features on the mRMR feature list. Thereafter, we applied the incremental feature selection method with a supervised classifier recurrent neural network (RNN) to select the discriminate features for classifying widely expressed genes from rarely expressed genes and construct an optimum RNN classifier. The Youden's indexes generated by the optimum RNN classifier and evaluated using a 10-fold cross validation were 0.739 for normal tissues and 0.639 for cancers. Furthermore, the underlying mechanisms of the key discriminate GO and KEGG features were analyzed. Results can facilitate the identification of the expression landscape of genes and elucidation of how gene expression shapes tissues and the microenvironment of cancers

    Continuous immobilized yeast reactor system for complete beer fermentation using spent grains and corncobs as carrier materials

    Get PDF
    Despite extensive research carried out in the last few decades, continuous beer fermentation has not yet managed to outperform the traditional batch technology. An industrial breakthrough in favour of continuous brewing using immobilized yeast could be expected only on achievement of the following process characteristics: simple design, low investment costs, flexible operation, effective process control and good product quality. The application of cheap carrier materials of by-product origin could significantly lower the investment costs of continuous fermentation systems. This work deals with a complete continuous beer fermentation system consisting of a main fermentation reactor (gas-lift) and a maturation reactor (packedbed) containing yeast immobilized on spent grains and corncobs, respectively. The suitability of cheap carrier materials for long-term continuous brewing was proved. It was found that by fine tuning of process parameters (residence time, aeration) it was possible to adjust the flavour profile of the final product. Consumers considered the continuously fermented beer to be of a regular quality. Analytical and sensorial profiles of both continuously and batch fermented beers were compared.(Fundação de Amparo a Pesquisa do Estado de São Paulo, Brazil (FAPESPFundação para a Ciência e a Tecnologia (FC

    Dark Matters in Axino Gravitino Cosmology

    Full text link
    It is suggested that the axino mass in the 1 MeV region and gravitino mass in the eV region can provide an axino lifetime of order of the time of photon decoupling. In this case, some undecayed axinos act like cold dark matters and some axino decay products (gravitinos and hot axions) act like hot dark matters at the time of galaxy formation.Comment: 9 pages, Late
    corecore