37 research outputs found

    An investigation into the effect of rate of stirring of bath electrolyte on the properties of electrodeposited CdTe thin film semiconductors

    Get PDF
    Electrodeposition (ED) has been recognized as a low cost and scalable technique available for fabrication of CdS/CdTe solar cells. Photovoltaic activity of these electrodeposited semiconductor materials drastically depends on the ED growth parameters namely; electrodeposition potential, concentrations and ratios of concentrations of precursors used to prepare the bath electrolyte, pH of the electrolyte, deposition temperature and rate of stirring of the electrolyte. In order to grow thin films with good photovoltaic properties, it is essential to maintain these variables at their optimum ranges of values during electrodepositions. Hence, this study was conducted to investigate the dependence of the properties of electrodeposited CdTe thin film material on the rate of stirring of the bath electrolyte. The CdTe material was grown on glass/FTO (23 cm2) and glass/FTO/CdS (23 cm2) surfaces in bath electrolytes containing 1.0 mol/L CdSO4 and 1.0 mmol/L TeO2 solutions at different rates of stirring within the range of 0-350 rpm while keeping the values of pH of the electrolyte, deposition temperature and cathodic deposition potential with respect to the saturated calomel electrode at 2.3, 65 °C and 650 mV respectively. After the heat treatment at 400 °C in air atmosphere, the deposited samples with a good visual appearance were selected and evaluated based on their morphological, elemental, structural, optical and electrical properties in order to identify the optimum range of rate of stirring for electrodeposition of CdTe thin film semiconductors. Results revealed that, rates of stirring in the range of 60-85 rpm in a 100 mL volume of electrolyte containing the substrate and the counter electrodes in the center of the bath with a separation of 2.0 cm between them can electrodeposit CdTe layers exhibiting required levels of morphological, structural, optical and electrical properties on both glass/FTO and glass/FTO/CdS surfaces

    Chemical Derivatization Processes Applied to Amine Determination in Samples of Different Matrix Composition

    Full text link

    Necessity and relevance of precipitate free clear electrolytes for electrodeposition of CdS semiconductor materials with enhanced photovoltaic properties

    No full text
    Cadmium sulfide (CdS) is a well-known window material used for fabrication of second generation thin film solar cells including CdS/CdTe and CdS/CuInGaSe2. Among the CdS fabrication techniques, electrodeposition is a simple, cost effective and scalable method that has been stepped towards large scale commercialization. However, the presence of precipitates in baths used for electrodeposition of CdS has been found to be a persistent problem which had produced CdS thin films with poor photovoltaic properties. Hence, an investigation was carried out to identify a set of optimum physiochemical conditions that can produce clear stable electrolyte for electrodeposition of CdS thin film semiconductors using CdCl2 and Na2S2O3 precursor salts. The study revealed that, electrolytes containing 0.10 mol/L CdCl2 and 0.01 mol/L Na2S2O3, within the pH range of 1.50–2.00 and the temperature range of 55–65 °C can provide clear and stable electrolytes for electrodeposition of CdS thin films. Further, the results showed that, the electrical, optical, morphological and structural properties of CdS layers electrodeposited from electrolytes within above physiochemical conditions were remarkably better to those electrodeposited from the turbid electrolytic baths formed beyond the ranges of predetermined optimum physiochemical conditions

    Secrecy performance enhancement using path selection over cluster-based cognitive radio networks

    No full text
    In this paper, we propose three path selection methods for cluster-based cognitive radio (CR) networks for secrecy enhancement by formulating the probability of non-zero secrecy capacity (PNSC). In the proposed work, it is assumed that uniform transmit power for the secondary transmitters and jammers must be adjusted to guarantee quality of service (QoS) of the primary network, follows a simple and efficient power allocation strategy. To improve the channel capacity, the best receiver is selected at each cluster to relay the source data to the next hop. Additionally, a jammer is randomly chosen at each cluster to generate noises on an eavesdropper, and to reduce the quality of the eavesdropping links. Three methods are studied in this paper. First, we propose the BEST path selection method (BEST) to maximize the end-to-end instantaneous secrecy capacity. Second, the path obtaining the MAXimum Value for the average end-to-end PNSC (MAXV) is selected for data transmission. Third, we also propose a RAND method in which a RANDom path is employed. For performance evaluation and comparison, we derive exact closed-form expressions for the end-to-end PNSC of the BEST, MAXV and RAND methods over Rayleigh fading channel. Monte Carlo simulations are then performed to verify the derived theoretical results

    Effect of stirring rate of electrolyte on properties of electrodeposited CdS layers

    No full text
    CdS is the most matching window material available for the CdTe absorber layer of CdS/CdTe solar cells and electrodeposition is a promising technique adaptable for fabrication of thin films of CdS owing to its simplicity, low cost, scalability and manufacturability. The quality of electrodeposited thin film semiconductor layers depends significantly on the electrodeposition potential, concentrations of precursor salts, pH, temperature and the rate of stirring of the electrolyte. In this study, the attention was focused on the effect of “stirring rate of electrolyte” since it has not been studied in detail in the past, despite of its strong relation to the rate of mass transport towards the working electrode where the thin film semiconductors are electrodeposited. This study was carried out via electrodepositing of CdS thin layers on fluorine doped tin oxide conducting glass working electrodes at different rates of stirring of the electrolyte while keeping the rest of the electrodeposition parameters unchanged at a previously identified set of values. The morphological, electrical and optical properties of the CdS layers grown at different stirring rates were used to determine the effect of stirring rate on the quality of CdS layers. The study revealed that, a stirring rate in the range of 60–125 rpm which produced orderly flows in the electrolyte around the working electrode (1 × 3 cm2) placed at the center of a 100 ml electrolytic bath with a distance of 2 cm apart between the graphite counter electrode and the conducting glass electrode could produce good quality CdS layers when electrodeposition was carried out at a cathodic deposition potential of 660 mV with respect to the saturated calomel electrode. The concentrations of CdCl2 and Na2S2O3 in the bath used were 0.10 and 0.01 M respectively. The temperature and pH of it were 60 °C and 1.80 respectively
    corecore