62 research outputs found
Minimax Controls of Uncertain Systems
Minimax controls for uncertain system
Optimal control of a linear system subject to partially specified input noise
One of the most basic problems in control theory is that of controlling a discrete-time linear system subject to uncertain noise with the objective of minimising the expectation of a quadratic cost. If one assumes the noise to be white, then solving this problem is relatively straightforward. However, white noise is arguably unrealistic: noise is not necessarily independent and one does not always precisely know its expectation. We first recall the optimal control policy without assuming independence, and show that in this case computing the optimal control inputs becomes infeasible. In a next step, we assume only knowledge of lower and upper bounds on the conditional expectation of the noise, and prove that this approach leads to tight lower and upper bounds on the optimal control inputs. The analytical expressions that determine these bounds are strikingly similar to the usual expressions for the case of white noise
The Value of Information for Populations in Varying Environments
The notion of information pervades informal descriptions of biological
systems, but formal treatments face the problem of defining a quantitative
measure of information rooted in a concept of fitness, which is itself an
elusive notion. Here, we present a model of population dynamics where this
problem is amenable to a mathematical analysis. In the limit where any
information about future environmental variations is common to the members of
the population, our model is equivalent to known models of financial
investment. In this case, the population can be interpreted as a portfolio of
financial assets and previous analyses have shown that a key quantity of
Shannon's communication theory, the mutual information, sets a fundamental
limit on the value of information. We show that this bound can be violated when
accounting for features that are irrelevant in finance but inherent to
biological systems, such as the stochasticity present at the individual level.
This leads us to generalize the measures of uncertainty and information usually
encountered in information theory
- …