34 research outputs found

    Long-Time Correlations in Single-Neutron Interferometry Data

    Get PDF
    We present a detailed analysis of the time series of time-stamped neutron counts obtained by single-neutron interferometry. The neutron counting statistics display the usual Poissonian behavior, but the variance of the neutron counts does not. Instead, the variance is found to exhibit a dependence on the phase-shifter setting which can be explained by a probabilistic model that accounts for fluctuations of the phase shift. The time series of the detection events exhibit long-time correlations with amplitudes that also depend on the phase-shifter setting. These correlations appear as damped oscillations with a period of about 2.8 s. By simulation, we show that the correlations of the time differences observed in the experiment can be reproduced by assuming that, for a fixed setting of the phase shifter, the phase shift experienced by the neutrons varies periodically in time with a period of 2.8 s. The same simulations also reproduce the behavior of the variance. Our analysis of the experimental data suggests that time-stamped data of singleparticle interference experiments may exhibit transient features that require a description in terms of non-stationary processes, going beyond the standard quantum model of independent random events

    Fragility of gate-error metrics in simulation models of flux-tunable transmon quantum computers

    Get PDF
    Constructing a quantum computer requires immensely precise control over a quantum system. A lack of precision is often quantified by gate-error metrics, such as the average infidelity or the diamond distance. However, usually such gate-error metrics are only considered for individual gates and not the errors that accumulate over consecutive gates. Furthermore, it is not well known how susceptible the metrics are to the assumptions which make up the model. Here we investigate these issues using realistic simulation models of quantum computers with flux-tunable transmons and coupling resonators. Our main findings reveal that (i) gate-error metrics are indeed affected by the many assumptions of the model, (ii) consecutive gate errors do not accumulate linearly, and (iii) gate-error metrics are poor predictors for the performance of consecutive gates. Additionally, we discuss a potential limitation in the scalability of the studied device architecture.</p

    Gate-error analysis in simulations of quantum computers with transmon qubits

    Get PDF
    In the model of gate-based quantum computation, the qubits are controlled by a sequence of quantum gates. In superconducting qubit systems, these gates can be implemented by voltage pulses. The success of implementing a particular gate can be expressed by various metrics such as the average gate fidelity, the diamond distance, and the unitarity. We analyze these metrics of gate pulses for a system of two superconducting transmon qubits coupled by a resonator, a system inspired by the architecture of the IBM Quantum Experience. The metrics are obtained by numerical solution of the time-dependent Schr\"odinger equation of the transmon system. We find that the metrics reflect systematic errors that are most pronounced for echoed cross-resonance gates, but that none of the studied metrics can reliably predict the performance of a gate when used repeatedly in a quantum algorithm

    Fragility of gate-error metrics in simulation models of flux-tunable transmon quantum computers

    Get PDF
    Constructing a quantum computer requires immensely precise control over a quantum system. A lack of precision is often quantified by gate-error metrics, such as the average infidelity or the diamond distance. However, usually such gate-error metrics are only considered for individual gates and not the errors that accumulate over consecutive gates. Furthermore, it is not well known how susceptible the metrics are to the assumptions which make up the model. Here we investigate these issues using realistic simulation models of quantum computers with flux-tunable transmons and coupling resonators. Our main findings reveal that (i) gate-error metrics are indeed affected by the many assumptions of the model, (ii) consecutive gate errors do not accumulate linearly, and (iii) gate-error metrics are poor predictors for the performance of consecutive gates. Additionally, we discuss a potential limitation in the scalability of the studied device architecture.</p

    Testing quantum fault tolerance on small systems

    Get PDF
    We extensively test a recent protocol to demonstrate quantum fault tolerance on three systems: (1) a real-time simulation of five spin qubits coupled to an environment with two-level defects, (2) a real-time simulation of transmon quantum computers, and (3) the 16-qubit processor of the IBM Q Experience. In the simulations, the dynamics of the full system is obtained by numerically solving the time-dependent Schrödinger equation. We find that the fault-tolerant scheme provides a systematic way to improve the results when the errors are dominated by the inherent control and measurement errors present in transmon systems. However, the scheme fails to satisfy the criterion for fault tolerance when decoherence effects are dominant

    Numerical analysis of effective models for flux-tunable transmon systems

    Get PDF
    Simulations and analytical calculations that aim to describe flux-tunable transmons are usually based on effective models of the corresponding lumped-element model. However, when a control pulse is applied, in most cases it is not known how much the predictions made with the effective models deviate from the predictions made with the original lumped-element model. In this work we compare the numerical solutions of the time-dependent Schrödinger equation for both the effective and the lumped-element models, for microwave and unimodal control pulses (external fluxes). These control pulses are used to model single-qubit (X) and two-qubit gate (iswap and cz) transitions. First, we derive a nonadiabatic effective Hamiltonian for a single flux-tunable transmon and compare the pulse response of this model to the one of the corresponding circuit Hamiltonian. Here we find that both models predict similar outcomes for similar control pulses. Then, we study how different approximations affect single-qubit (X) and two-qubit gate (iswap and cz) transitions in two different two-qubit systems. For this purpose we consider three different systems in total: a single flux-tunable transmon and two two-qubit systems. In summary, we find that a series of commonly applied approximations (individually and/or in combination) can change the response of a system substantially, when a control pulse is applied

    Separation of conditions as a prerequisite for quantum theory

    No full text
    Contains fulltext : 212284.pdf (publisher's version ) (Open Access
    corecore