17,552 research outputs found

    Machine Science in Biomedicine: Practicalities, Pitfalls and Potential

    Full text link
    Machine Science, or Data-driven Research, is a new and interesting scientific methodology that uses advanced computational techniques to identify, retrieve, classify and analyse data in order to generate hypotheses and develop models. In this paper we describe three recent biomedical Machine Science studies, and use these to assess the current state of the art with specific emphasis on data mining, data assessment, costs, limitations, skills and tool support

    A 128K-bit CCD buffer memory system

    Get PDF
    A prototype system was implemented to demonstrate that CCD's can be applied advantageously to the problem of low power digital storage and particularly to the problem of interfacing widely varying data rates. 8K-bit CCD shift register memories were used to construct a feasibility model 128K-bit buffer memory system. Peak power dissipation during a data transfer is less than 7 W., while idle power is approximately 5.4 W. The system features automatic data input synchronization with the recirculating CCD memory block start address. Descriptions are provided of both the buffer memory system and a custom tester that was used to exercise the memory. The testing procedures and testing results are discussed. Suggestions are provided for further development with regards to the utilization of advanced versions of CCD memory devices to both simplified and expanded memory system applications

    Analysing Magnetism Using Scanning SQUID Microscopy

    Get PDF
    Scanning superconducting quantum interference device microscopy (SSM) is a scanning probe technique that images local magnetic flux, which allows for mapping of magnetic fields with high field and spatial accuracy. Many studies involving SSM have been published in the last decades, using SSM to make qualitative statements about magnetism. However, quantitative analysis using SSM has received less attention. In this work, we discuss several aspects of interpreting SSM images and methods to improve quantitative analysis. First, we analyse the spatial resolution and how it depends on several factors. Second, we discuss the analysis of SSM scans and the information obtained from the SSM data. Using simulations, we show how signals evolve as a function of changing scan height, SQUID loop size, magnetization strength and orientation. We also investigated 2-dimensional autocorrelation analysis to extract information about the size, shape and symmetry of magnetic features. Finally, we provide an outlook on possible future applications and improvements.Comment: 16 pages, 10 figure

    Comment on `Renormalization-Group Calculation of the Dependence on Gravity of the Surface Tension and Bending Rigidity of a Fluid Interface'

    Full text link
    It is shown that the interface model introduced in Phys. Rev. Lett. 86, 2369 (2001) violates fundamental symmetry requirements for vanishing gravitational acceleration gg, so that its results cannot be applied to critical properties of interfaces for g→0g\to 0.Comment: A Comment on a recent Letter by J.G. Segovia-L\'opez and V. Romero-Roch\'{\i}n, Phys. Rev. Lett.86, 2369 (2001). Latex file, 1 page (revtex

    Ab initio parametrised model of strain-dependent solubility of H in alpha-iron

    Full text link
    The calculated effects of interstitial hydrogen on the elastic properties of alpha-iron from our earlier work are used to describe the H interactions with homogeneous strain fields using ab initio methods. In particular we calculate the H solublility in Fe subject to hydrostatic, uniaxial, and shear strain. For comparison, these interactions are parametrised successfully using a simple model with parameters entirely derived from ab initio methods. The results are used to predict the solubility of H in spatially-varying elastic strain fields, representative of realistic dislocations outside their core. We find a strong directional dependence of the H-dislocation interaction, leading to strong attraction of H by the axial strain components of edge dislocations and by screw dislocations oriented along the critical slip direction. We further find a H concentration enhancement around dislocation cores, consistent with experimental observations.Comment: part 2/2 from splitting of 1009.3784 (first part was 1102.0187), minor changes from previous version

    Adiabatic and Non-Adiabatic Contributions to the Free Energy from the Electron-Phonon Interaction for Na, K, Al, and Pb

    Full text link
    We calculate the adiabatic contributions to the free energy due to the electron--phonon interaction at intermediate temperatures, 0⩽kBT<ϵF0 \leqslant k_{B} T < \epsilon_{F} for the elemental metals Na, K, Al, and Pb. Using our previously published results for the nonadiabatic contributions we show that the adiabatic contribution, which is proportional to T2T^{2} at low temperatures and goes as T3T^{3} at high temperatures, dominates the nonadiabatic contribution for temperatures above a cross--over temperature, TcT_{c}, which is between 0.5 and 0.8 TmT_{m}, where TmT_{m} is the melting temperature of the metal. The nonadiabatic contribution falls as T−1T^{-1} for temperatures roughly above the average phonon frequency.Comment: Updated versio

    Sucker Control Chemicals for Use on Burley Tobacco

    Get PDF
    Maleic hydrazide (MH) formulations containing 3 pounds per gallon of active ingredient can no longer be manufactured for sale in the United States. However, all 3-pound MH formulations that were manufactured before October, 1981 can be sold until the supply of that formulation is exhausted. MH formulations containing 1.5 or 2.25 pounds of active ingredient (Potassium salt of MH) can still be manufactured and sold in the U.S. for controlling suckers on tobacco

    The Evolution of Optical Depth in the Ly-alpha Forest: Evidence Against Reionization at z~6

    Get PDF
    We examine the evolution of the IGM Ly-alpha optical depth distribution using the transmitted flux probability distribution function (PDF) in a sample of 63 QSOs spanning absorption redshifts 1.7 < z < 5.8. The data are compared to two theoretical optical depth distributions: a model distribution based on the density distribution of Miralda-Escude et al. (2000) (MHR00), and a lognormal distribution. We assume a uniform UV background and an isothermal IGM for the MHR00 model, as has been done in previous works. Under these assumptions, the MHR00 model produces poor fits to the observed flux PDFs at redshifts where the optical depth distribution is well sampled, unless large continuum corrections are applied. However, the lognormal optical depth distribution fits the data at all redshifts with only minor continuum adjustments. We use a simple parametrization for the evolution of the lognormal parameters to calculate the expected mean transmitted flux at z > 5.4. The lognormal optical depth distribution predicts the observed Ly-alpha and Ly-beta effective optical depths at z > 5.7 while simultaneously fitting the mean transmitted flux down to z = 1.6. If the evolution of the lognormal distribution at z < 5 reflects a slowly-evolving density field, temperature, and UV background, then no sudden change in the IGM at z ~ 6 due to late reionization appears necessary. We have used the lognormal optical depth distribution without any assumption about the underlying density field. If the MHR00 density distribution is correct, then a non-uniform UV background and/or IGM temperature may be required to produce the correct flux PDF. We find that an inverse temperature-density relation greatly improves the PDF fits, but with a large scatter in the equation of state index. [Abridged]Comment: 45 pages, 16 figures, submitted to Ap
    • …
    corecore