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Scanning superconducting quantum interference device microscopy (SSM) is a scanning probe tech-
nique that images local magnetic flux, which allows for mapping of magnetic fields with high field
and spatial accuracy. Many studies involving SSM have been published in the last few decades, using
SSM to make qualitative statements about magnetism. However, quantitative analysis using SSM
has received less attention. In this work, we discuss several aspects of interpreting SSM images and
methods to improve quantitative analysis. First, we analyse the spatial resolution and how it depends
on several factors. Second, we discuss the analysis of SSM scans and the information obtained from
the SSM data. Using simulations, we show how signals evolve as a function of changing scan height,
SQUID loop size, magnetization strength, and orientation. We also investigated 2-dimensional auto-
correlation analysis to extract information about the size, shape, and symmetry of magnetic features.
Finally, we provide an outlook on possible future applications and improvements. Published by AIP
Publishing. https://doi.org/10.1063/1.5001390

INTRODUCTION

Scanning superconducting quantum interference device
microscopy (scanning SQUID microscopy or SSM) is part of
the scanning probe microscopy (SPM) family.1 Its main pur-
pose is to image the local magnetic flux on sample surfaces. In
general, SQUIDs are the most sensitive magnetometers cur-
rently available,2,3 making SSM an excellent instrument to
image magnetism with high spatial as well as field accuracy.

Several other methods to image magnetism have been
developed over the years, some of which we will mention here.
The most common one is magnetic force microscopy (MFM),
which measures the force between a magnetized scan probe
and the sample surface. Scanning Hall probe microscopy4

(SHPM) makes use of the appearance of a Hall voltage in
a magnetic field. The magnitude of the Hall voltage provides
a measure for the strength of the magnetic field. There is also
a variety of optics-based methods with the ability to measure
magnetic properties.5–9

Besides the unprecedented magnetic field accuracy, SSM
techniques have an added strength in that they can be applied
to a wide variety of magnetic phenomena. Typical objects
of interest are superconducting vortices1,10–12 and ferromag-
netic surfaces,13–17 but SSM can also be used for imaging the
magnetic field originating from current distributions1,18–20 and
local susceptibility using an auxiliary field loop.21–23 SSM has
also been applied to measuring fractional flux quanta24–26 and
the coexistence of superconductivity and ferromagnetism.27

Local manipulation of the surface magnetism has also been
demonstrated.28 Finally, SSM can also be a tool to image
magnetic contaminations on a non-magnetic surface or a
surface with a known magnetic field structure (e.g., current
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leads or predefined magnetic structures). One disadvantage
of SSM is the spatial resolution. Compared to MFM, which
can achieve a resolution down to a few tens of nanome-
ters,29,30 SSM has only recently entered the sub-micrometre
regime.31–33

Up to now, SSM analysis of these kinds of features was
mostly done in a qualitative manner. With increasing use of
SSM, quantitative analysis of SSM data is in demand. This
will lead to a better understanding of the data and underlying
physics. Previously, limitations in the spatial resolution made
the fitting of data to models and extracting sample charac-
teristics difficult. Here, we will discuss ways to improve the
quantitative analysis of SSM images and show how certain
image features depend on material or scan parameters. The
section titled Spatial Resolution will discuss the spatial res-
olution of SSM and how it depends on different factors, and
we will show that it is not as straightforward as in other SPM
techniques. The section titled Imaging of Magnetic Features
will focus on SSM imaging of magnetic features. The discus-
sion will focus mostly on magnetic dipoles and ferromagnetic
surfaces.

The discussions in this publication are written in the con-
text of SSM but are relevant to other techniques as well. The
considerations on the spatial resolution can be translated to
other imaging techniques. Considering, for example, the Hall
structure used in SHPM to image magnetism, this Hall struc-
ture with a finite size will influence the system’s resolution,
similar to the effect from a pickup loop in SSM. Looking
outside magnetic imaging, an X-ray beam used in scanning
nano-X-ray diffraction34 (SNXRD) will also have a finite
diameter. The discussion on analysis of data in this publication
(or at the least, the mathematics underlying them) has broader
applications as well. For example, the discussion on autocor-
relation can also be used for SNXRD to give information about
a sample’s physical structure.
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SI-units and formulae for magnetism are used in this
paper.

WORKING PRINCIPLE OF SCANNING
SQUID MICROSCOPY

A direct-current (dc) SQUID as used in SSM systems
consists of a superconducting ring containing two Josephson
junctions biased with a constant current. From basic quantum
mechanics, one can find that the total magnetic fluxΦ threading
a superconducting ring must be quantized in units of the flux
quantum Φ0 = 2.0678 × 10−15 T m2,

Φ= n ×
h
2e
= nΦ0, (1)

where h is Planck’s constant, e is the elementary charge, and n
is an integer. By adding the two Josephson junctions, Eq. (1)
changes to the following:

1
2π

(ϕ1 − ϕ2) +
Φ

Φ0
= n, (2)

where n is an integer and ϕ1 and ϕ2 are the phase drops across
each Josephson junction. The sign of ϕ1 and ϕ2 depends on
the direction in which the phase drop is defined, combined
with the path integral

∮
J ·dl in the general fluxoid quantization

equation. From this, we can see that in a dc SQUID, the flux
Φ is related to the phase. Combining this with the Josephson
equation

I = Ic sin(ϕ), (3)

we see that flux couples to the critical current.
In practice, dc SQUIDs in SSM systems are often oper-

ated in the voltage state.35 There, the flux Φ is related to the
voltage across the dc SQUID in a periodic, sine-like manner.
This is the preferred modus operandi since voltage is mea-
sured more easily than the critical current. To combat the non-
linearity of the flux-voltage relation, a feedback loop is applied.

The dc SQUID is put at a certain working point on the flux-
voltage relation (usually where dΦ/dV is largest), and the
feedback circuit will keep the system at that working point
when moved by an external magnetic flux. The current passed
through the feedback coil causes a voltage drop across an
accompanying feedback resistance, which is then a measure
for the flux threading the dc SQUID.

The dc SQUID is typically extended with a pickup loop1,36

[Fig. 1(a)], which has a well-defined area for the flux to pen-
etrate, while the rest of the SQUID is magnetically shielded.
This is to reduce the influence of the external magnetic field
on the SQUID itself. A SQUID is only sensitive to the mag-
netic field component perpendicular to the SQUID plane (note
that this does not mean that it cannot image objects with mag-
netic moment parallel to the SQUID plane, as we will discuss
later). If we assume the sensor to be parallel to the surface, this
component would be the z-component.

Most of the analysis in this work will be based on the
magnetic dipole equation, given by

~B=
µ0

4π



3~r
(
−→m ·~r

)
r5

−

−→m

r3


, (4)

where µ0 is the magnetic permeability of free space, ~r =
{x; y; h} is the distance vector from the source to observer with
magnitude r, and −→m = {mx; my; mz} is the magnetic moment of
the dipole with magnitude m. From this, we can determine the
z-component of a dipole field,

Bz =
µ0

4π



3h
(
mxx + myy + mzh

)
r5

−
mz

r3


. (5)

SSM data are typically displayed as either magnetic flux
or magnetic field. Since an SSM setup measures magnetic
flux, displaying data as such will be more accurate because
it involves fewer conversions. However, displaying data as

FIG. 1. (a) Schematic depiction of a
SQUID, extended with a pickup loop.
(b) Definition of the SSM coordi-
nate system and the scanning height h
and scanning angle θ. (c) Comparison
between the SQUID pickup loop area
As and the pixel area Ap. (d) Schematic
depiction of the behavior of magnetic
field lines near a superconductor and the
influence on the effective diameter Re of
the pickup loop.
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magnetic field is more practical because it can be more
easily related to other properties of the sample. The conver-
sion between field and flux involves the area of the pickup
loop, which we will discuss in the next section.

SPATIAL RESOLUTION

We define the in-plane area of the object of interest to be
the xy-plane and the direction normal to the sample surface
as the z-direction [Fig. 1(b)]. The sensor is held at a sample-
sensor distance h, with an angle θ between it and the xy-plane.
We then divide the scanned area into pixels, where one pixel
corresponds to one data point. A pixel has a set area Ap =∆x∆y,
where ∆x and ∆y are the step size in the x and y directions,
respectively [Fig. 1(c)].

Because of the high precision of linear motors or piezo
actuators, the step size is usually reduced to values below the
dimensions of the pickup loop [Fig. 1(c)]. Therefore, the flux
Φs that threads the pickup loop is not equal to the flux Φp

that threads one pixel. If the magnetic field B is assumed to be
constant across the surface of the pickup loop As, we can state

B=
Φp

Ap
=
Φs

As
→Φp =

Ap

As
Φs. (6)

We can see that to obtain the corrected value for the flux
through a pixel, a correction factor Ap/As has to be multiplied
with the measured flux.

Since the SQUID circuitry (including the pickup loop)
is made out of a superconducting material, the flux threading
the pickup loop is subject to flux focusing. Because supercon-
ductors are perfect diamagnets (barring Abrikosov vortices),
magnetic field lines that would normally penetrate the mate-
rial of the pickup loop are instead bent around the material
through the inner area of the pickup loop. This causes an
effective enhancement of the pickup loop area, leading to an
increased response of the system. This means that when con-
verting flux to magnetic field, the effective area of the pickup
loop is slightly larger than the area enclosed by the pickup
loop. A rigorous analysis was done by Ketchen and Kirtley.37

As a first approximation, one can assume that incoming flux
lines will be split halfway to bend around a superconducting
material [see Fig. 1(d)]. If one takes a superconducting ring,
then the effective diameter Re of that ring will be the physi-
cal diameter Rp plus half the width of the ring. As is therefore
increased to an effective area Ae, and Eq. (6) becomes

Φp =
Ap

Ae
Φs. (7)

Ae can be obtained experimentally by measuring a single
Abrikosov vortex.20,38 Since the total flux coming from a vor-
tex must equal 1Φ0, the correction to the physical area can be
obtained by summing all the data points and dividing by the
flux quantum. This assumes all flux coming from a vortex is
imaged by the SSM.

Next, we will discuss the spatial resolution of the SSM
system. One of the key features of SSM setups, and SQUIDs
in general, is their high precision in measuring the magnitude
of magnetic flux, and discussions on field sensitivity can be

found elsewhere.3,39,40 However, as mentioned, their spatial
resolution is lacking compared to, for example, MFM.

Spatial resolution is the ability of a system to discern
between different features. In most publications, the spatial
resolution is not mentioned; only the geometry of the sensor
and the sample-sensor distance are given.11,13,19,21–24,27,32,41–47

Knowing the SSM spatial resolution is key in understanding
the data obtained from an experiment. As we will show below,
the spatial resolution of an SSM setup is a complex combina-
tion of both the pickup loop diameter and the sample-sensor
distance.

A magnetic field will have a certain magnetic field profile
B(x, y) [Fig. 2(a)]. When imaged by SSM, the resulting flux
profile Φ will be broadened due to the finite size Re of the
pickup loop [Fig. 2(b)]. The amount of broadening depends
linearly on Re.

Conversely, as the sample-sensor distance increases, the
field profile will broaden [Fig. 2(a)], which in turn causesΦ to
broaden as well. This is independent of the size of the pickup
loop. As we can see, both factors influence the final flux pro-
file Φ. This means that increasing the height, the pickup loop
size, or both will cause broadening of Φ until two neigh-
boring features can no longer be distinguished [Fig. 2(c)].
In the case where the distance D between two features
becomes smaller than 2Re, the drop in flux between two vor-
tices will instead turn into a peak (due to the flux profiles
adding up). This complicates interpretation since such a peak
could be seen as an additional (non-existent) feature. There-
fore, defining the spatial resolution based only on one of
these two factors gives an incomplete picture of a system’s
capabilities.

To properly determine the spatial resolution of an SSM
system, Kirtley et al. suggested a Rayleigh-like criterion.36

Their definition states that two Abrikosov vortices are resolved
if the intensity of the flux profile between them drops to 81%
of the maximum value, with the spatial resolution being equal
to the distance D between these two vortices. To illustrate,

FIG. 2. (a) Magnetic profile B for some magnetic feature as a function of
height. (b) Flux profile Φ (dashed) obtained by measuring delta function B
(solid) with a pickup loop of radius Re. (c) Two magnetic features repre-
sented as delta functions (blue and green solid curves) separated by a distance
D with overlapping flux profiles (light blue and light green dashed curves,
respectively) produce a combined flux profile (black dashed curve) that can
obscure the individual features.
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Kirtley et al. obtained a spatial resolution of 11.2 µm with
their 10 µm pickup loop.36

The problem with basing a definition of the spatial reso-
lution on an Abrikosov vortex is that current SSM techniques
are approaching resolutions that are on the scale of the phys-
ical size of the vortex. This means that when determining the
resolution, the vortex size will have to be taken into account.
This can be problematic since the physical size of a vortex is
not trivial and depends on several different factors such as film
thickness.48

We therefore suggest a new definition of spatial resolu-
tion, based on an in-plane point-dipole [Fig. 3(a)]. Such a
dipole will produce an out-of-plane field that will have two
extrema [Fig. 3(b)]. The separation s of these extrema depends
purely on the height h at which it is measured and the diam-
eter d of the pickup loop. That is, in the limit that both go to
zero, s goes to zero. We now define the spatial resolution to be
equal to s.

To determine s, we can derive the equation to determine
the location of the two extrema as a function of scan height
h and pickup loop radius R = d/2. We start from Eq. (5) and
assume a magnetic moment ~m= {mx; 0; 0}. This means that the
extrema lie on the line y = 0 and gives us

B(x)=
µ0

4π
3mx

xz(
x2 + h2)5/2

.

Next, we take the average over the pickup loop, which is equiv-
alent to taking the average over a line section with length
d = 2R. We call this Ba,

Ba(x)=
µ0

4π
3mx

1
2R

x+R∫
x−R

x′z(
x′2 + h2

)5/2
dx′

=
µ0

4π
3mx

h
2R



1

3
(
h2 + (x −R)2

)3/2
−

1

3
(
h2 + (x + R)2

)3/2


.

To find the distance between the extrema, we take the derivative
and set it equal to 0,

d
dx

Ba(x)= 0=
µ0

4π
3mx

h
2R

×



x + R(
h2 + (x + R)2

)5/2
−

x − R(
h2 + (x − R)2

)5/2


.

Rearranging, simplifying, and setting x to be s/2 yield the
implicit equation for s,

s
2 + R((

s
2 + R

)2
+ h2

)5/2
=

s
2 − R((

s
2 − R

)2
+ h2

)5/2
. (8)

Figure 3(c) shows the normalized resolution s/d as a function
of the normalized height h/d. Also indicated are the two limit-
ing cases: s = d for low values of h/d and s = h for high values
of h/d. Within 1% error, one can take s = d for h/d < 0.37
and s = h for h/d > 5.5. Equation (8) and Fig. 3(c) allow for
determining the spatial resolution on any scale.

We have chosen this definition because an in-plane dipole
field is easily recognizable and relatable for users of SSM
systems or readers of the SSM-related literature.

IMAGING OF MAGNETIC FEATURES

In this section, we will discuss the analysis of data pro-
vided by an SSM system. Again, we would like to emphasize
that although this section is written from the perspective of
SSM, it can be applied to other imaging techniques, including
techniques outside of magnetic imaging.

The field of magnetic features smaller than the spatial
resolution can often be simplified to a point-dipole field shown
in Eq. (4). Simulated fields of point-dipoles as they would be
imaged by an SSM setup are shown in Fig. 4 for different
inclination angles θ. As shown, the typical double-lobe picture
of a dipole field is only visible under certain angles. The data
can be fitted to the dipole equation to obtain the magnetic
moment −→m of the magnetic feature.

Figure 4(d) also shows how SSM images the in-plane
magnetic moment. In order to close the field lines, the mag-
netic field must rotate through the out-of-plane direction to
reverse and close the loop. This is why, in the in-plane case
of Fig. 4(d), the magnetic field signal is strongest at a small
distance away from the point-dipole.

To go to ferromagnetism from an individual dipole, we
will have a short look at a collection of dipoles. Figure 5 shows
what several dipoles located close together would look like
when imaged by an SSM. This could be the case, for example,
when imaging a sample containing magnetized particles. We
can see that for a few dipoles [Figs. 5(a)–5(c)], the individual
dipoles can still be seen clearly enough. But as the number
of dipoles increases [Figs. 5(d) and 5(e)], the resulting image
quickly becomes too complicated to accurately determine the

FIG. 3. Definition of spatial resolution
based on a point-dipole. (a) Out-of-
plane field image of a point-dipole at the
origin with a magnetic moment aligned
along the x-axis. (b) Magnetic field pro-
file indicated in (a). The red dashed lines
indicate the two extrema, with the sepa-
ration distance s indicated with the black
solid line. (c) The normalized resolution
s/d as a function of h/d (blue solid line),
with the limits s = d (red dashed) and
s = h (black dashed).
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FIG. 4. [(a)–(g)] Simulated magnetic
field intensity images of dipoles with
changing inclination angle θ with the
z-axis. (h) Coordinate system of (a)–(g).

FIG. 5. [(a)–(e)] Simulations for 1, 2,
3, 5, and 8 point-dipoles (black dots).
The arrows indicate the direction of the
dipole magnetic moment.

number of dipoles. One can use fitting algorithms to deter-
mine the properties of the dipoles using Eq. (5), but since
every dipole has 6 degrees of freedom (3 for position and 3
for magnetic moment), this will use a lot of computing power
even for a small number of dipoles, and the solution is not
necessarily unique.

Next, we will discuss ferromagnetic surfaces. SSM has
been applied more and more to image surface ferromag-
netism,13–17,27 following the rise of thin film science. Apart
from global magnetic field and moment data, properties of
interest are usually magnetic domain size and shape, as well
as any preferential magnetic moment orientation.

To complement this discussion, simulations have been
done to highlight certain aspects of ferromagnetism. The simu-
lations shown in this section have been carried out as follows:
The simulated region is divided into domains, each with a
certain magnetic moment and orientation. The domains are
subdivided into pixels, which are treated as point-dipoles. The

fields of these dipoles are summed to get the fields of the
domains, which are finally combined to get the simulated SSM
image. The simulation parameters are based on earlier research
performed in our group16 and are indicative of typical SSM
images (see Fig. 6 for a comparison).

Because ferromagnetic materials typically have a domain
structure, this will be reflected in the SSM image (see Fig. 6).
However, it is important to note that the domain structure
visible on the SSM image may not be representative of the
underlying domains in the material itself. As the spatial reso-
lution worsens due to increasing height, the field of different
domains will be summed to form a weaker, averaged field. This
is shown in Figs. 7(a)–7(d), where a domain structure is simu-
lated at different heights. One can clearly see that the domain
structure as seen by the SSM changes: domains become larger
and fewer in number due to averaging, with lower overall field
values. The inhomogeneity in the magnetic field will persist
because of the random nature of domains. This means that one

FIG. 6. Comparison between a simu-
lated ferromagnetic surface and an SSM
scan of a ferromagnetic surface. (a) Sim-
ulated surface using known parameters
for the thin film ferromagnet LaMnO3
and our SSM setup. (b) SSM data for a
thin film of LaMnO3 on niobium-doped
SrTiO3. Scale bars indicate 10 µm.
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FIG. 7. Simulated ferromagnetic sur-
face containing an in-plane magnetized
domain structure at different heights:
(a) 1 µm; (b) 5 µm; (c) 10 µm;
(d) 20 µm. The scale bar indicates
10 µm. (e) Dependence of BRMS on
the scanning height (black solid line).
The shaded area shows a region of rela-
tively low decrease in the signal. The red
dashed line is an empirical fit to the sim-
ulation results of the form log10 BRMS =
�413h0.45

� 4.27.

has to be careful about making comments on the domain size
as seen in SSM images.

We can also see that the signal is strongest at the edges
of the domain. As discussed before, this is due to the field
lines having to reverse the direction in order to be closed. This
causes the out-of-plane component of the magnetic field to be
largest at domain boundaries (where it reverses) and weakest
in the center of domains (where the field is almost completely
in-plane).

To quantify the overall strength of the magnetic field on
a ferromagnetic surface, we propose to use the root-mean-
squared (RMS) field value BRMS as a figure of merit,

BRMS =

√
1
n

∑n

i=1

(
Bi − B

)2
, (9)

where n is the number of data points, Bi is the field value
at point i, and B is the average magnetic field. This allows for
comparison between samples when certain sample preparation
or scanning parameters are changed.

Figure 7(e) shows the dependence of BRMS on the scanning
height h. We can see that BRMS decreases faster with increasing
height. The shaded region in Fig. 7(e) shows the h-values for
which the decrease in BRMS is relatively low, indicating an
optimal scanning height. We see that above 1 µm, the value of
BRMS rapidly decreases, indicating a large loss of information.

An empirical fit was found of the form

log10BRMS =−413h0.45 − 4.27. (10)

The above function serves only to give an approximation to
the obtained curve and has no theoretical basis.

Another aspect to investigate is how BRMS changes with
magnetic moment direction and strength. Figures 8(a) and
8(c) highlight the stark difference between in-plane and out-
of-plane magnetic moments. This is caused by the out-of-
plane field component being largest near the domain walls
in the case of the in-plane magnetic moment and largest
near the center of a domain for the out-of-plane magnetic
moment.

As the height increases, the visual difference that is
present at low height [compare Figs. 8(a)–8(c)] becomes neg-
ligible [Figs. 8(b) and 8(d)]. This complicates making claims
about the orientation of the magnetic moments if the spatial
resolution is not sufficient.

Figure 8(e) shows the dependence of BRMS on the mag-
netic moment for the in-plane and out-of-plane oriented cases.
Since the domain structure in a simulation is randomly gen-
erated, multiple simulations were averaged to get the results
shown. We can see that BRMS depends linearly on the magnetic
moment m, which corresponds to the linear relation between
B and m for a point-dipole as shown in Eq. (5).

FIG. 8. Simulated 100 × 100 µm2

ferromagnetic surfaces with in-plane
[(a) and (b)] and out-of-plane [(c) and
(d)] orientation, at scan heights of 1 µm
[(a) and (c)] and 20 µm [(b) and (d)].
(e) Relation between BRMS and the mag-
netic moment m.
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FIG. 9. Influence of the pickup loop
diameter on imaging ferromagnetism.
(a) Simulated ferromagnetic domain
structure as imaged with a pickup loop
of size zero. (b) The same as in (a), but
with a pickup loop with a diameter of
10 µm. (c) BRMS as a function of pickup
loop diameter. (d) BRMS as a function
of h for different pickup loop diameters.
The effect is larger at low h, where d
dominates the spatial resolution.

Looking at the out-of-plane series, we see a larger coef-
ficient between BRMS and the magnetic moment compared to
the in-plane series. The larger values are a natural result of the
field lines being mostly aligned along the z-axis, which is the
component that is picked up by the SQUID.

Another factor that influences this coefficient is the ratio
between the surface area and the boundary of a domain. As
discussed before, in-plane magnetism will be visible at the
edges of a domain, meaning more edges will lead to higher
BRMS values. Conversely, for out-of-plane magnetism, the field
is visible above the domain, and zero at the domain edge,
meaning fewer boundaries cause higher BRMS values.

Finally, we can look at the effect of imaging using a pickup
loop with a non-zero size. As discussed before, this will cause
a broadening of the measured signal due to averaging across
the whole loop. Figure 9(a) shows the same simulation shown
in Figs. 7(a) and 8(a). Figure 9(b) shows this same simula-
tion but then calculated with a pickup loop with a diameter of
10 µm. This is done, for each point, by taking the average of
all data points within a diameter d of that point.

The broadening of the features is clearly visible in
Fig. 9(b) and is similar to the broadening due to increasing
height. Figure 9(c) shows how BRMS changes with height for
various sizes d of the pickup loop. We can see that for low val-
ues of h, the change in BRMS is significant due to d being the
dominant factor determining the spatial resolution. For higher
values of h, the spatial resolution is dominated by h, which is
visible in the curves merging into a single curve.

Figure 9(d) shows how BRMS changes as a function of d.
For higher d, the value of BRMS appears to saturate. The limit
is of course BRMS = 0 if a large enough area is averaged.

MAGNETIC STRUCTURE ANALYSIS
USING AUTOCORRELATION

Another useful tool in analyzing SSM images is
2-dimensional autocorrelation. Calculating the autocorrela-
tion function of an image can provide information about
the general structure and distribution of features. In general,

the autocorrelation function R(δx, δy) for some (discrete)
signal B(x, y) is given by

R(δx, δy)=
∑

x,y
B(x + δx, y + δy) B(x, y). (11)

This function will peak if B, shifted by (δx, δy), is similar
to the original. Therefore, in the case of periodic structures,
calculating the autocorrelation function will give information
about the lattice structure. In the case of SSM, this has been
used to investigate lattices of superconducting vortices.49

Additionally, the central peak of the autocorrelation func-
tion can be analyzed to get an impression of the dimensions
of typical features. The width of a peak along a certain direc-
tion will correspond to the size of typical features along that
same direction. In this way, one can also obtain directional
information.

We can apply the 2-dimensional autocorrelation function
to a simulated magnetized surface. In Fig. 10(a), we have simu-
lated a ferromagnetic surface with hexagonal domains that are
magnetized with a random orientation in the in-plane direc-
tion. When we apply the autocorrelation directly, as shown in
Fig. 10(b), we cannot see any symmetry.

The autocorrelation is a function that identifies period-
icity in a signal. Each domain in the simulation creates a
positively valued field on one side and a negatively valued
field on the other. When these domains are placed next to each
other with random orientations (i.e., random magnetic moment
direction), the fields can add up or cancel out. Because of the
random nature, there will be no periodicity in the field signal,
which is why the autocorrelation function returns to zero away
from the central peak.

We can improve our results by first taking the abso-
lute value of the data in Fig. 8(a) and then performing the
2-dimensional autocorrelation,

R(δx, δy)=
∑

x,y
|B (x + δx, y + δy)| |B (x, y)|. (12)

In this way, the symmetry in the magnetic structure is enhanced
by taking positive and negative fields to have the same sign. The
results, in Fig. 10(c), clearly show the hexagonal symmetry of
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FIG. 10. 2D autocorrelation applied to a simulated magnetic surface. (a) Simulated surface of hexagonal domains with magnetic moment aligned randomly
in-plane. (b) Center area of the 2-dimensional autocorrelation R of the image in (a). (c) Center area of the 2D autocorrelation of the absolute value of the image
in (a). The six-fold symmetry is clearly visible.

the original domain structure. From Fig. 10(c), we can also
find the typical size of the domains, by analyzing the central
peak, and the distance between domains, by measuring the
peak-to-peak distance. This matches the parameters used for
the simulation in Fig. 10(a).

A similar analysis can be done using a 2-dimensional
Fourier transform, which in the discrete case has the form

F
(
kx, ky

)
=

∑`x−1

x=0

∑`y−1

y=0
e
−i

[(
2π
`x

)
kxx+

(
2π
`y

)
kyy

]

B(x, y). (13)

The Fourier transform and the autocorrelation function are
closely related through the Wiener-Khinchin theorem.50 A
Fourier analysis will give similar results to the autocorrela-
tion, in that it will highlight repetition in the data. On the
other hand, it is more limited since it will not give informa-
tion about the typical dimensions of the domain. As before,
the results may be improved by taking the absolute value of B
first.

OUTLOOK

We will now touch on several topics regarding on-going
and future developments in SSM.

As mentioned in the Introduction, SSM sensors have
only recently achieved sub-micrometer dimensions.31–33 This
trend will continue as fabrication techniques of SQUID sen-
sors improve. This will mean that the spatial resolution will
improve as well, due to the smaller pickup loop as discussed
before. Furthermore, the sensor will also have a better field
resolution, which can be deduced from the spin sensitivity Sn,

Sn =Φn
R
re

(
1 +

h2

R2

) 3
2

, (14)

where Φn is the flux noise in Φ0Hz�1/2, R is the radius of
the pickup loop, and re = 2.82 × 10�15 m is the classic
electron radius.32,51 Improvements to the spatial and field
resolutions will allow for more detailed analysis of certain
magnetic phenomena. Examples include single-electron spin
measurements or detailed measurements of Abrikosov vor-
tices or magnetic domain walls. Several fabrication methods
have been applied to create nanoSQUIDs, including focused
ion-beam milling,32,52,53 electron-beam lithography,54 or even
carbon-nanotubes.55 A review on nanoSQUID fabrication and
applications was done by Foley and Hilgenkamp.39

Another topic of interest is local susceptibility measure-
ments. This has been realized by fabricating a secondary coil

close to the pickup loop with which a magnetic field can be
applied.47 Such a setup allows for measuring the local sus-
ceptibility or otherwise locally manipulating the sample while
measuring the resulting magnetic signal.

With the rising interest in topological non-trivial materi-
als, SSM has been used in measuring the edge currents that
appear in such systems.45 The SSM images the magnetic field
produced by the edge currents. From this image, the current
paths and strength can be calculated.

Some setups have also included the ability to vary the
temperature of the sample while imaging.41,42,56,57 The dif-
ficulty here lies with the fact that the SQUID has to be
superconducting and therefore has to be kept at cryogenic
temperatures. Although measuring at varying temperatures
below the sensor’s critical temperature is achievable, going
to higher temperatures (e.g., room temperature) is more dif-
ficult. The solution is to separate the sensor and the sample
in space, keeping the sensor in a cryogenic environment and
the sample in a system with varying temperature.42,57 Because
the systems have to be thermally isolated from each other,
the distance between the sensor and sample becomes rela-
tively large, meaning the spatial resolution suffers in these
systems. The obvious trade-off is the ability to measure mag-
netism around, for example, the Curie or Néel temperature of
samples.

In terms of data analysis, benefits can be found in devel-
oping deconvolution methods tailored to the SSM. Since
SSM data are a convolution of the actual magnetic flux
profile and the pickup loop, the spatial resolution can be
improved by applying proper deconvolution. While some early
attempts at deconvolution have been made,58,59 much can
be gained by borrowing from other microscopy fields, most
notably optical microscopy and astronomy, where deconvolu-
tion is actively being used and developed (see, for example,
Refs. 60–64). Accurate deconvolution requires good knowl-
edge of the system geometry, including the sample-sensor
separation, which can be difficult to determine with high
precision.

Another large step can be made by developing SSMs
that can image the dynamics of systems of interest. Recent
research includes subtracting consecutive images to reveal
underlying dynamic behavior17 and significantly improving
the time-resolution of the sensor itself.65 Further development
will facilitate studying several dynamic magnetic systems,
such as moving vortices in superconductors and the movement
of domain walls in ferromagnets.
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CONCLUSION

In this report, we have discussed imaging magnetism
using SSM. We have covered several aspects that contribute
to how SSM images are formed and what information can
be obtained from them. Here we will summarize the most
important results.

We started by looking at the spatial resolution of an
SSM system. We observed that both the scanning height and
the pickup loop diameter influence the resolution. Therefore,
either parameter on its own is not sufficient to properly describe
the spatial resolution of an SSM setup. We have defined the
spatial resolution to be the separation between the two extrema
of an imaged in-plane point-dipole. We believe this definition
is intuitive and simple and incorporates both the height and
dimensions of the pickup loop.

Next, we discussed imaging magnetic features using SSM.
Using simulations, we have seen how dipoles will be imaged in
different orientations and if multiple dipoles are close together.
From there, we looked at imaging ferromagnetic surfaces. We
noticed how the parameter BRMS sharply drops with increasing
height, resulting in much of the information about the under-
lying domain structure being lost. We also looked at how the
strength and orientation of the magnetic moment influence
the final image. The difference between in-plane and out-
of-plane magnetic moments is only visible at low scanning
height. Beyond that, we observed a linear relation between
BRMS and the magnitude of the magnetic moment, with a larger
coefficient for the out-of-plane case.

Finally, we have shortly discussed using 2-dimensional
autocorrelation to extract more information about the structure
of the imaged magnetic phenomena. Using a simulated array
of ferromagnetic hexagons, we showed that this function can
be used to find typical feature size, orientation, and distance
to neighboring features.
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