1,739 research outputs found
X-Ray Microanalysis of Hollow Heart Potatoes
Electron microprobe and X-ray fluorescence techniques were used to study elemental gradients associated with the physiological disorder hollow heart i n potato tubers. Gradients were found along the length and across the width of mature tubers. These were not rela ted to the disorder, however . Tubers with advanced symptoms of the disorder had elemental levels and gradients similar to those in healthy, control tubers. The results suggest that if the disorder is initially caused by an elemental deficiency, as has sometimes been proposed , the deficiency is temporary and no longer exists in mature tubers with advanced hollow heart. Radial gradients were associated rnd inly with two contrasting tissues . the centra 1 pith and the surrounding perimedullary zone. Tissue differences are critical in microprobe studies involving small samples Microprobe studies of developing tubers containing incipient stages of hollow heart. employing strip samples restricted to the central pith where the disorder originates and taken so as to traverse the small lesions, showed a dramatic increase in Mg in lesion areas. It is suggested that a nutrient imbalance may trigger the onset of the cell necrosis that characterizes the initiation of hollow heart in potato . A localized Mg toxicity or Ca deficiency due to high Mg:Ca ratio is implicated
Doping dependence of the Neel temperature in Mott-Hubbard antiferromagnets: Effect of vortices
The rapid destruction of long-range antiferromagnetic order upon doping of
Mott-Hubbard antiferromagnetic insulators is studied within a generalized
Berezinskii-Kosterlitz-Thouless renormalization group theory in accordance with
recent calculations suggesting that holes dress with vortices. We calculate the
doping-dependent Neel temperature in good agreement with experiments for
high-Tc cuprates. Interestingly, the critical doping where long-range order
vanishes at zero temperature is predicted to be xc ~ 0.02, independently of any
energy scales of the system.Comment: 4 pages with 3 figures included, minor revisions, to be published in
PR
Disorder-Induced Resistive Anomaly Near Ferromagnetic Phase Transitions
We show that the resistivity rho(T) of disordered ferromagnets near, and
above, the Curie temperature T_c generically exhibits a stronger anomaly than
the scaling-based Fisher-Langer prediction. Treating transport beyond the
Boltzmann description, we find that within mean-field theory, d\rho/dT exhibits
a |T-T_c|^{-1/2} singularity near T_c. Our results, being solely due to
impurities, are relevant to ferromagnets with low T_c, such as SrRuO3 or
diluted magnetic semiconductors, whose mobility near T_c is limited by
disorder.Comment: 5 pages, 3 figures; V2: with a few clarifications, as publishe
Impedance of a Rectangular Beam Tube with Small Corrugations
We consider the impedance of a structure with rectangular, periodic
corrugations on two opposing sides of a rectangular beam tube. Using the method
of field matching, we find the modes in such a structure. We then limit
ourselves to the the case of small corrugations, but where the depth of
corrugation is not small compared to the period. For such a structure we
generate analytical approximate solutions for the wave number , group
velocity , and loss factor for the lowest (the dominant) mode
which, when compared with the results of the complete numerical solution,
agreed well. We find: if , where is the beam pipe width and is
the beam pipe half-height, then one mode dominates the impedance, with
( is the depth of corrugation),
, and , which (when replacing by
) is the same scaling as was found for small corrugations in a {\it round}
beam pipe. Our results disagree in an important way with a recent paper of
Mostacci {\it et al.} [A. Mostacci {\it et al.}, Phys. Rev. ST-AB, {\bf 5},
044401 (2002)], where, for the rectangular structure, the authors obtained a
synchronous mode with the same frequency , but with .
Finally, we find that if is large compared to then many nearby modes
contribute to the impedance, resulting in a wakefield that Landau damps.Comment: 18 pages, 6 figures, 1 bibliography fil
Spin dynamics in the diluted ferromagnetic Kondo lattice model
The interplay of disorder and competing interactions is investigated in the
carrier-induced ferromagnetic state of the Kondo lattice model within a
numerical finite-size study in which disorder is treated exactly. Competition
between impurity spin couplings, stability of the ferromagnetic state, and
magnetic transition temperature are quantitatively investigated in terms of
magnon properties for different models including dilution, disorder, and
weakly-coupled spins. A strong optimization is obtained for T_c at hole doping
p << x, highlighting the importance of compensation in diluted magnetic
semiconductors. The estimated T_c is in good agreement with experimental
results for Ga_{1-x}Mn_x As for corresponding impurity concentration, hole
bandwidth, and compensation. Finite-temperature spin dynamics is quantitatively
studied within a locally self-consistent magnon renormalization scheme, which
yields a substantial enhancement in T_c due to spin clustering, and highlights
the nearly-paramagnetic spin dynamics of weakly-coupled spins. The large
enhancement in density of low-energy magnetic excitations due to disorder and
competing interactions results in a strong thermal decay of magnetization,
which fits well with the Bloch form M_0(1-BT^{3/2}) at low temperature, with B
of same order of magnitude as obtained in recent squid magnetization
measurements on Ga_{1-x}Mn_x As samples.Comment: 13 pages, 14 figure
Probability currents as principal characteristics in the statistical mechanics of non-equilibrium steady states
One of the key features of non-equilibrium steady states (NESS) is the
presence of nontrivial probability currents. We propose a general
classification of NESS in which these currents play a central distinguishing
role. As a corollary, we specify the transformations of the dynamic transition
rates which leave a given NESS invariant. The formalism is most transparent
within a continuous time master equation framework since it allows for a
general graph-theoretical representation of the NESS. We discuss the
consequences of these transformations for entropy production, present several
simple examples, and explore some generalizations, to discrete time and
continuous variables.Comment: 39 pages, 5 figures. Invited article for JSTAT Special Issue on
'Principles of Dynamics of Nonequilibrium Systems', held at the Newton
Institute, Cambridge, UK, in 200
Renormalization group approach to layered superconductors
A renormalization group theory for a system consisting of coupled
superconducting layers as a model for typical high-temperature superconducters
is developed. In a first step the electromagnetic interaction over infinitely
many layers is taken into account, but the Josephson coupling is neglected. In
this case the corrections to two-dimensional behavior due to the presence of
the other layers are very small. Next, renormalization group equations for a
layered system with very strong Josephson coupling are derived, taking into
account only the smallest possible Josephson vortex loops. The applicability of
these two limiting cases to typical high-temperature superconductors is
discussed. Finally, it is argued that the original renormalization group
approach by Kosterlitz is not applicable to a layered system with intermediate
Josephson coupling.Comment: RevTeX, 15 pages, 4 figures can be obtained from the author by
conventional mail; accepted for publication in Phys. Rev.
Ferromagnetism in Diluted Magnetic Semiconductor Heterojunction Systems
Diluted magnetic semiconductors (DMSs), in which magnetic elements are
substituted for a small fraction of host elements in a semiconductor lattice,
can become ferromagnetic when doped. In this article we discuss the physics of
DMS ferromagnetism in systems with semiconductor heterojunctions. We focus on
the mechanism that cause magnetic and magnetoresistive properties to depend on
doping profiles, defect distributions, gate voltage, and other system
parameters that can in principle be engineered to yield desired results.Comment: 12 pages, 7 figures, review, special issue of Semicon. Sci. Technol.
on semiconductor spintronic
- …