252 research outputs found

    Nonlinear Impurity Modes in Homogeneous and Periodic Media

    Full text link
    We analyze the existence and stability of nonlinear localized waves described by the Kronig-Penney model with a nonlinear impurity. We study the properties of such waves in a homogeneous medium, and then analyze new effects introduced by periodicity of the medium parameters. In particular, we demonstrate the existence of a novel type of stable nonlinear band-gap localized states, and also reveal an important physical mechanism of the oscillatory wave instabilities associated with the band-gap wave resonances.Comment: 11 pages, 3 figures; To be published in: Proceedings of the NATO Advanced Research Workshop "Nonlinearity and Disorder: Theory and Applications" (Tashkent, 2-6 Oct, 2000) Editors: P.L. Christiansen and F.K. Abdullaev (Kluwer, 2001

    Optical parametric oscillation with distributed feedback in cold atoms

    Full text link
    There is currently a strong interest in mirrorless lasing systems, in which the electromagnetic feedback is provided either by disorder (multiple scattering in the gain medium) or by order (multiple Bragg reflection). These mechanisms correspond, respectively, to random lasers and photonic crystal lasers. The crossover regime between order and disorder, or correlated disorder, has also been investigated with some success. Here, we report one-dimensional photonic-crystal lasing (that is, distributed feedback lasing) with a cold atom cloud that simultaneously provides both gain and feedback. The atoms are trapped in a one-dimensional lattice, producing a density modulation that creates a strong Bragg reflection with a small angle of incidence. Pumping the atoms with auxiliary beams induces four-wave mixing, which provides parametric gain. The combination of both ingredients generates a mirrorless parametric oscillation with a conical output emission, the apex angle of which is tunable with the lattice periodicity

    Polarization of tightly focused laser beams

    Full text link
    The polarization properties of monochromatic light beams are studied. In contrast to the idealization of an electromagnetic plane wave, finite beams which are everywhere linearly polarized in the same direction do not exist. Neither do beams which are everywhere circularly polarized in a fixed plane. It is also shown that transversely finite beams cannot be purely transverse in both their electric and magnetic vectors, and that their electromagnetic energy travels at less than c. The electric and magnetic fields in an electromagnetic beam have different polarization properties in general, but there exists a class of steady beams in which the electric and magnetic polarizations are the same (and in which energy density and energy flux are independent of time). Examples are given of exactly and approximately linearly polarized beams, and of approximately circularly polarized beams.Comment: 9 pages, 6 figure

    Substrate-based atom waveguide using guided two-color evanescent light fields

    Full text link
    We propose a dipole-force linear waveguide which confines neutral atoms up to lambda/2 above a microfabricated single-mode dielectric optical guide. The optical guide carries far blue-detuned light in the horizontally-polarized TE mode and far red-detuned light in the vertically-polarized TM mode, with both modes close to optical cut-off. A trapping minimum in the transverse plane is formed above the optical guide due to the differing evanescent decay lengths of the two modes. This design allows manufacture of mechanically stable atom-optical elements on a substrate. We calculate the full vector bound modes for an arbitrary guide shape using two-dimensional non-uniform finite elements in the frequency-domain, allowing us to optimize atom waveguide properties. We find that a rectangular optical guide of 0.8um by 0.2um carrying 6mW of total laser power (detuning +-15nm about the D2 line) gives a trap depth of 200uK for cesium atoms (m_F = 0), transverse oscillation frequencies of f_x = 40kHz and f_y = 160kHz, collection area ~ 1um^2 and coherence time of 9ms. We discuss the effects of non-zero m_F, surface interactions, heating rate, the substrate refractive index, and the limits on waveguide bending radius.Comment: 12 pages, 4 figures, revtex, submitted to Phys. Rev. A Replaced: final version accepted by PRA v.61 Feb 2000. (2 paragraphs added

    Nonlinear localized waves in a periodic medium

    Full text link
    We analyze the existence and stability of nonlinear localized waves in a periodic medium described by the Kronig-Penney model with a nonlinear defect. We demonstrate the existence of a novel type of stable nonlinear band-gap localized states, and also reveal an important physical mechanism of the oscillatory wave instabilities associated with the band-gap resonances.Comment: 4 pages, 5 figure

    Atom-optics hologram in the time domain

    Full text link
    The temporal evolution of an atomic wave packet interacting with object and reference electromagnetic waves is investigated beyond the weak perturbation of the initial state. It is shown that the diffraction of an ultracold atomic beam by the inhomogeneous laser field can be interpreted as if the beam passes through a three-dimensional hologram, whose thickness is proportional to the interaction time. It is found that the diffraction efficiency of such a hologram may reach 100% and is determined by the duration of laser pulses. On this basis a method for reconstruction of the object image with matter waves is offered.Comment: RevTeX, 13 pages, 8 figures; minor grammatical change

    Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser

    Get PDF
    G. A. Turnbull, P. Andrew, M. J. Jory, William L. Barnes, and I. D. W. Samuel, Physical Review B, Vol. 64, article 125122 (2001). "Copyright © 2001 by the American Physical Society."We present an experimental study of the emission characteristics and photonic band structure of a distributed feedback polymer laser, based on the material poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylene vinylene]. We use measurements of the photonic band dispersion to explain how the substrate microstructure modifies both spontaneous and stimulated emission. The lasing structure exhibits a one-dimensional photonic band gap around 610 nm, with lasing occurring at one of the two associated band edges. The band edge (frequency) selection mechanism is found to be a difference in the level of output coupling of the modes associated with the two band edges. This is a feature of the second-order distributed feedback mechanism we have employed and is clearly evident in the measured photonic band structur

    Thermalisation of a two-dimensional photonic gas in a 'white-wall' photon box

    Full text link
    Bose-Einstein condensation, the macroscopic accumulation of bosonic particles in the energetic ground state below a critical temperature, has been demonstrated in several physical systems. The perhaps best known example of a bosonic gas, blackbody radiation, however exhibits no Bose-Einstein condensation at low temperatures. Instead of collectively occupying the lowest energy mode, the photons disappear in the cavity walls when the temperature is lowered - corresponding to a vanishing chemical potential. Here we report on evidence for a thermalised two-dimensional photon gas with freely adjustable chemical potential. Our experiment is based on a dye filled optical microresonator, acting as a 'white-wall' box for photons. Thermalisation is achieved in a photon number-conserving way by photon scattering off the dye-molecules, and the cavity mirrors both provide an effective photon mass and a confining potential - key prerequisites for the Bose-Einstein condensation of photons. As a striking example for the unusual system properties, we demonstrate a yet unobserved light concentration effect into the centre of the confining potential, an effect with prospects for increasing the efficiency of diffuse solar light collection.Comment: 15 pages, 3 figure
    corecore