643 research outputs found

    The finiteness of the four dimensional antisymmetric tensor field model in a curved background

    Full text link
    A renormalizable rigid supersymmetry for the four dimensional antisymmetric tensor field model in a curved space-time background is constructed. A closed algebra between the BRS and the supersymmetry operators is only realizable if the vector parameter of the supersymmetry is a covariantly constant vector field. This also guarantees that the corresponding transformations lead to a genuine symmetry of the model. The proof of the ultraviolet finiteness to all orders of perturbation theory is performed in a pure algebraic manner by using the rigid supersymmetry.Comment: 23 page

    Gauge Theory of the String Geodesic Field

    Full text link
    A relativistic string is usually represented by the Nambu-Goto action in terms of the extremal area of a 2-dimensional timelike submanifold of Minkowski space. Alternatively, a family of classical solutions of the string equation of motion can be globally described in terms of the associated geodesic field. In this paper we propose a new gauge theory for the geodesic field of closed and open strings. Our approach solves the technical and conceptual problems affecting previous attempts to describe strings in terms of local field variables. The connection between the geodesic field, the string current and the Kalb-Ramond gauge potential is discussed and clarified. A non-abelian generalization and the generally covariant form of the model are also discussed.Comment: 38 pages, PHYZZX, UTS-DFT-92-2

    Topological Landau-Ginzburg Theory for Vortices in Superfluid 4^4He

    Full text link
    We propose a new Landau-Ginzburg theory for arbitrarily shaped vortex strings in superfluid 4^4He. The theory contains a topological term and directly describes vortex dynamics. We introduce gauge fields in order to remove singularities from the Landau-Ginzburg order parameter of the superfluid, so that two kinds of gauge symmetries appear, making the continuity equation and conservation of the total vorticity manifest. The topological term gives rise to the Berry phase term in the vortex mechanical actions.Comment: LATEX, 9 page

    PTEN self-regulates through USP11 via the PI3K-FOXO pathway to stabilize tumor suppression

    Get PDF
    PTEN is a lipid phosphatase that functions as a dose-dependent tumor suppressor through the PI3K/AKT pathway. Here the authors describe a signaling feedback mechanism where PTEN stability is regulated through transcriptional upregulation of X-linked ubiquitin-specific protease 11 (USP11) via the PI3K/FOXO pathway

    Studies of the motion and decay of axion walls bounded by strings

    Get PDF
    We discuss the appearance at the QCD phase transition, and the subsequent decay, of axion walls bounded by strings in N=1 axion models. We argue on intuitive grounds that the main decay mechanism is into barely relativistic axions. We present numerical simulations of the decay process. In these simulations, the decay happens immediately, in a time scale of order the light travel time, and the average energy of the radiated axions is 7ma \simeq 7 m_a for va/ma500v_a/m_a \simeq 500. is found to increase approximately linearly with ln(va/ma)\ln(v_a/m_a). Extrapolation of this behaviour yields 60ma \sim 60 m_a in axion models of interest. We find that the contribution to the cosmological energy density of axions from wall decay is of the same order of magnitude as that from vacuum realignment, with however large uncertainties. The velocity dispersion of axions from wall decay is found to be larger, by a factor 10310^3 or so, than that of axions from vacuum realignment and string decay. We discuss the implications of this for the formation and evolution of axion miniclusters and for the direct detection of axion dark matter on Earth. Finally we discuss the cosmology of axion models with N>1N>1 in which the domain wall problem is solved by introducing a small UPQ_{PQ}(1) breaking interaction. We find that in this case the walls decay into gravitational waves.Comment: 37 pages, 10 figures, a minor mistake was corrected, several references and comments were adde

    Experimental loophole-free violation of a Bell inequality using entangled electron spins separated by 1.3 km

    Get PDF
    For more than 80 years, the counterintuitive predictions of quantum theory have stimulated debate about the nature of reality. In his seminal work, John Bell proved that no theory of nature that obeys locality and realism can reproduce all the predictions of quantum theory. Bell showed that in any local realist theory the correlations between distant measurements satisfy an inequality and, moreover, that this inequality can be violated according to quantum theory. This provided a recipe for experimental tests of the fundamental principles underlying the laws of nature. In the past decades, numerous ingenious Bell inequality tests have been reported. However, because of experimental limitations, all experiments to date required additional assumptions to obtain a contradiction with local realism, resulting in loopholes. Here we report on a Bell experiment that is free of any such additional assumption and thus directly tests the principles underlying Bell's inequality. We employ an event-ready scheme that enables the generation of high-fidelity entanglement between distant electron spins. Efficient spin readout avoids the fair sampling assumption (detection loophole), while the use of fast random basis selection and readout combined with a spatial separation of 1.3 km ensure the required locality conditions. We perform 245 trials testing the CHSH-Bell inequality S2S \leq 2 and find S=2.42±0.20S = 2.42 \pm 0.20. A null hypothesis test yields a probability of p=0.039p = 0.039 that a local-realist model for space-like separated sites produces data with a violation at least as large as observed, even when allowing for memory in the devices. This result rules out large classes of local realist theories, and paves the way for implementing device-independent quantum-secure communication and randomness certification.Comment: Raw data will be made available after publicatio

    Characteristic cohomology of pp-form gauge theories

    Full text link
    The characteristic cohomology Hchark(d)H^k_{char}(d) for an arbitrary set of free pp-form gauge fields is explicitly worked out in all form degrees k<n1k<n-1, where nn is the spacetime dimension. It is shown that this cohomology is finite-dimensional and completely generated by the forms dual to the field strengths. The gauge invariant characteristic cohomology is also computed. The results are extended to interacting pp-form gauge theories with gauge invariant interactions. Implications for the BRST cohomology are mentioned.Comment: Latex file, no figures, 44 page

    Non Abelian BF theories with sources and 2-D gravity

    Get PDF
    We study the interaction of non-Abelian topological BFBF theories defined on two dimensional manifolds with point sources carrying non-Abelian charges. We identify the most general solution for the field equations on simply and multiply connected two-manifolds. Taking the particular choice of the so-called extended Poincar\'e group as the gauge group we discuss how recent discussions of two dimensional gravity models do fit in this formalism.Comment: 20 pages, Latex, To appear in Phys Rev D5

    Highly Tissue Specific Expression of Sphinx Supports Its Male Courtship Related Role in Drosophila melanogaster

    Get PDF
    Sphinx is a lineage-specific non-coding RNA gene involved in regulating courtship behavior in Drosophila melanogaster. The 5′ flanking region of the gene is conserved across Drosophila species, with the proximal 300 bp being conserved out to D. virilis and a further 600 bp region being conserved amongst the melanogaster subgroup (D. melanogaster, D. simulans, D. sechellia, D. yakuba, and D. erecta). Using a green fluorescence protein transformation system, we demonstrated that a 253 bp region of the highly conserved segment was sufficient to drive sphinx expression in male accessory gland. GFP signals were also observed in brain, wing hairs and leg bristles. An additional ∼800 bp upstream region was able to enhance expression specifically in proboscis, suggesting the existence of enhancer elements. Using anti-GFP staining, we identified putative sphinx expression signal in the brain antennal lobe and inner antennocerebral tract, suggesting that sphinx might be involved in olfactory neuron mediated regulation of male courtship behavior. Whole genome expression profiling of the sphinx knockout mutation identified significant up-regulated gene categories related to accessory gland protein function and odor perception, suggesting sphinx might be a negative regulator of its target genes
    corecore