5,555 research outputs found

    Perfect fluids from high power sigma-models

    Full text link
    Certain solutions of a sextic sigma-model Lagrangian reminiscent of Skyrme model correspond to perfect fluids with stiff matter equation of state. We analyse from a differential geometric perspective this correspondence extended to general barotropic fluids.Comment: 17 pages. Version published in IJGMMP 8 (2011). Added Example 3.4 and 1 referenc

    Conformational changes of calmodulin upon Ca2+ binding studied with a microfluidic mixer

    Get PDF
    A microfluidic mixer is applied to study the kinetics of calmodulin conformational changes upon Ca2+ binding. The device facilitates rapid, uniform mixing by decoupling hydrodynamic focusing from diffusive mixing and accesses time scales of tens of microseconds. The mixer is used in conjunction with multiphoton microscopy to examine the fast Ca2+-induced transitions of acrylodan-labeled calmodulin. We find that the kinetic rates of the conformational changes in two homologous globular domains differ by more than an order of magnitude. The characteristic time constants are ≈490 μs for the transitions in the C-terminal domain and ≈20 ms for those in the N-terminal domain of the protein. We discuss possible mechanisms for the two distinct events and the biological role of the stable intermediate, half-saturated calmodulin

    Proposal for the determination of nuclear masses by high-precision spectroscopy of Rydberg states

    Full text link
    The theoretical treatment of Rydberg states in one-electron ions is facilitated by the virtual absence of the nuclear-size correction, and fundamental constants like the Rydberg constant may be in the reach of planned high-precision spectroscopic experiments. The dominant nuclear effect that shifts transition energies among Rydberg states therefore is due to the nuclear mass. As a consequence, spectroscopic measurements of Rydberg transitions can be used in order to precisely deduce nuclear masses. A possible application of this approach to the hydrogen and deuterium, and hydrogen-like lithium and carbon is explored in detail. In order to complete the analysis, numerical and analytic calculations of the quantum electrodynamic (QED) self-energy remainder function for states with principal quantum number n=5,...,8 and with angular momentum L=n-1 and L=n-2 are described (j = L +/- 1/2).Comment: 21 pages; LaTe

    Telomere dysfunction accurately predicts clinical outcome in chronic lymphocytic leukaemia, even in patients with early stage disease

    Get PDF
    © 2014 John Wiley & Sons Ltd. Defining the prognosis of individual cancer sufferers remains a significant clinical challenge. Here we assessed the ability of high-resolution single telomere length analysis (STELA), combined with an experimentally derived definition of telomere dysfunction, to predict the clinical outcome of patients with chronic lymphocytic leukaemia (CLL). We defined the upper telomere length threshold at which telomere fusions occur and then used the mean of the telomere 'fusogenic' range as a prognostic tool. Patients with telomeres within the fusogenic range had a significantly shorter overall survival (P  <  0·0001; Hazard ratio [HR] = 13·2, 95% confidence interval [CI]  = 11·6-106·4) and this was preserved in early-stage disease patients (P  <  0·0001, HR=19·3, 95% CI = 17·8-802·5). Indeed, our assay allowed the accurate stratification of Binet stage A patients into those with indolent disease (91% survival at 10 years) and those with poor prognosis (13% survival at 10 years). Furthermore, patients with telomeres above the fusogenic mean showed superior prognosis regardless of their IGHV mutation status or cytogenetic risk group. In keeping with this finding, telomere dysfunction was the dominant variable in multivariate analysis. Taken together, this study provides compelling evidence for the use of high-resolution telomere length analysis coupled with a definition of telomere dysfunction in the prognostic assessment of CLL

    An Absolute Flux Density Measurement of the Supernova Remnant Casseopia A at 32 GHz

    Get PDF
    We report 32 GHz absolute flux density measurements of the supernova remnant Cas A, with an accuracy of 2.5%. The measurements were made with the 1.5-meter telescope at the Owens Valley Radio Observatory. The antenna gain had been measured by NIST in May 1990 to be 0.505±0.007mKJy0.505 \pm 0.007 \frac{{\rm mK}}{{\rm Jy}}. Our observations of Cas A in May 1998 yield Scas,1998=194±5JyS_{cas,1998} = 194 \pm 5 {\rm Jy}. We also report absolute flux density measurements of 3C48, 3C147, 3C286, Jupiter, Saturn and Mars.Comment: 30 pages, 4 figures; accepted for publication by AJ. Revised systematic error budget, corrected typos, and added reference

    Rotons and Quantum Evaporation from Superfluid 4He

    Full text link
    The probability of evaporation induced by R+R^+ and R−R^- rotons at the surface of superfluid helium is calculated using time dependent density functional theory. We consider excitation energies and incident angles such that phonons do not take part in the scattering process. We predict sizable evaporation rates, which originate entirely from quantum effects. Results for the atomic reflectivity and for the probability of the roton change-mode reflection are also presented.Comment: 11 pages, REVTEX, 3 figures available upon request or at http://anubis.science.unitn.it/~dalfovo/papers/papers.htm

    A Search for Isolated Microwave Pulses from the Perseus Cluster of Galaxies

    Get PDF
    The paper describes a search for prompt microwave emissions from supernovae in the central region of the Perseus cluster of galaxies, using a coincidence technique involving five tracking radiometers located at widely spaced sites. No coincidences were found between January and December, 1973, and no supernovae were reported during this period from the optical surveys, in that region of sky

    Pd/Cr Gates for a MIS Type Hydrogen Sensor

    Get PDF
    Instead of the pure Pd gates in MIS type hydrogen sensor, Pd-Cr alloy gates with different composition and structure were used to improve the sensors performance. The use of Pd-Cr alloy not only extended the dynamic range from 100 ppm to 50,000 ppm of hydrogen, but also showed quick response. The dynamic range and sensitivity were related to the nature of metal outer surface and the metal/insulator interface respectively

    UPF1 promotes the formation of R loops to stimulate DNA double-strand break repair

    Get PDF
    DNA-RNA hybrid structures have been detected at the vicinity of DNA double-strand breaks (DSBs) occurring within transcriptional active regions of the genome. The induction of DNA-RNA hybrids strongly affects the repair of these DSBs, but the nature of these structures and how they are formed remain poorly understood. Here we provide evidence that R loops, three-stranded structures containing DNA-RNA hybrids and the displaced single-stranded DNA (ssDNA) can form at sub-telomeric DSBs. These R loops are generated independently of DNA resection but are induced alongside two-stranded DNA-RNA hybrids that form on ssDNA generated by DNA resection. We further identified UPF1, an RNA/DNA helicase, as a crucial factor that drives the formation of these R loops and DNA-RNA hybrids to stimulate DNA resection, homologous recombination, microhomology-mediated end joining and DNA damage checkpoint activation. Our data show that R loops and DNA-RNA hybrids are actively generated at DSBs to facilitate DNA repair
    • …
    corecore