466 research outputs found
Impact of Channel Estimation Errors on Multiuser Detection via the Replica Method
For practical wireless DS-CDMA systems, channel estimation is imperfect due
to noise and interference. In this paper, the impact of channel estimation
errors on multiuser detection (MUD) is analyzed under the framework of the
replica method. System performance is obtained in the large system limit for
optimal MUD, linear MUD and turbo MUD, and is validated by numerical results
for finite systems.Comment: To appear in the EURASIP Journal on Wireless Communication and
Networking - Special Issue on Advanced Signal Processing Algorithms for
Wireless Communication
Large System Analysis of Game-Theoretic Power Control in UWB Wireless Networks with Rake Receivers
This paper studies the performance of partial-Rake (PRake) receivers in
impulse-radio ultrawideband wireless networks when an energy-efficient power
control scheme is adopted. Due to the large bandwidth of the system, the
multipath channel is assumed to be frequency-selective. By using noncooperative
game-theoretic models and large system analysis, explicit expressions are
derived in terms of network parameters to measure the effects of self- and
multiple-access interference at a receiving access point. Performance of the
PRake is compared in terms of achieved utilities and loss to that of the
all-Rake receiver.Comment: To appear in the Proceedings of the 8th IEEE International Workshop
on Signal Processing Advances in Wireless Communications (SPAWC), Helsinki,
Finland, June 17-20, 200
Packet Relaying Control in Sensing-based Spectrum Sharing Systems
Cognitive relaying has been introduced for opportunistic spectrum access
systems by which a secondary node forwards primary packets whenever the primary
link faces an outage condition. For spectrum sharing systems, cognitive
relaying is parametrized by an interference power constraint level imposed on
the transmit power of the secondary user. For sensing-based spectrum sharing,
the probability of detection is also involved in packet relaying control. This
paper considers the choice of these two parameters so as to maximize the
secondary nodes' throughput under certain constraints. The analysis leads to a
Markov decision process using dynamic programming approach. The problem is
solved using value iteration. Finally, the structural properties of the
resulting optimal control are highlighted
Cooperative Non-Orthogonal Multiple Access in 5G Systems
Non-orthogonal multiple access (NOMA) has recently received considerable
attention as a promising candidate for 5G systems. A key feature of NOMA is
that users with better channel conditions have prior information about the
messages of the other users. This prior knowledge is fully exploited in this
paper, where a cooperative NOMA scheme is proposed. Outage probability and
diversity order achieved by this cooperative NOMA scheme are analyzed, and an
approach based on user pairing is also proposed to reduce system complexity in
practice
Adaptive Modulation in Multi-user Cognitive Radio Networks over Fading Channels
In this paper, the performance of adaptive modulation in multi-user cognitive
radio networks over fading channels is analyzed. Multi-user diversity is
considered for opportunistic user selection among multiple secondary users. The
analysis is obtained for Nakagami- fading channels. Both adaptive continuous
rate and adaptive discrete rate schemes are analysed in opportunistic spectrum
access and spectrum sharing. Numerical results are obtained and depicted to
quantify the effects of multi-user fading environments on adaptive modulation
operating in cognitive radio networks
Fronthaul-Constrained Cloud Radio Access Networks: Insights and Challenges
As a promising paradigm for fifth generation (5G) wireless communication
systems, cloud radio access networks (C-RANs) have been shown to reduce both
capital and operating expenditures, as well as to provide high spectral
efficiency (SE) and energy efficiency (EE). The fronthaul in such networks,
defined as the transmission link between a baseband unit (BBU) and a remote
radio head (RRH), requires high capacity, but is often constrained. This
article comprehensively surveys recent advances in fronthaul-constrained
C-RANs, including system architectures and key techniques. In particular, key
techniques for alleviating the impact of constrained fronthaul on SE/EE and
quality of service for users, including compression and quantization,
large-scale coordinated processing and clustering, and resource allocation
optimization, are discussed. Open issues in terms of software-defined
networking, network function virtualization, and partial centralization are
also identified.Comment: 5 Figures, accepted by IEEE Wireless Communications. arXiv admin
note: text overlap with arXiv:1407.3855 by other author
Measurement Matrix Design for Compressive Sensing Based MIMO Radar
In colocated multiple-input multiple-output (MIMO) radar using compressive
sensing (CS), a receive node compresses its received signal via a linear
transformation, referred to as measurement matrix. The samples are subsequently
forwarded to a fusion center, where an L1-optimization problem is formulated
and solved for target information. CS-based MIMO radar exploits the target
sparsity in the angle-Doppler-range space and thus achieves the high
localization performance of traditional MIMO radar but with many fewer
measurements. The measurement matrix is vital for CS recovery performance. This
paper considers the design of measurement matrices that achieve an optimality
criterion that depends on the coherence of the sensing matrix (CSM) and/or
signal-to-interference ratio (SIR). The first approach minimizes a performance
penalty that is a linear combination of CSM and the inverse SIR. The second one
imposes a structure on the measurement matrix and determines the parameters
involved so that the SIR is enhanced. Depending on the transmit waveforms, the
second approach can significantly improve SIR, while maintaining CSM comparable
to that of the Gaussian random measurement matrix (GRMM). Simulations indicate
that the proposed measurement matrices can improve detection accuracy as
compared to a GRMM
- …