391 research outputs found
First-principles GW calculations for DNA and RNA nucleobases
On the basis of first-principles GW calculations, we study the quasiparticle
properties of the guanine, adenine, cytosine, thymine, and uracil DNA and RNA
nucleobases. Beyond standard G0W0 calculations, starting from Kohn-Sham
eigenstates obtained with (semi)local functionals, a simple self-consistency on
the eigenvalues allows to obtain vertical ionization energies and electron
affinities within an average 0.11 eV and 0.18 eV error respectively as compared
to state-of-the-art coupled-cluster and multi-configurational perturbative
quantum chemistry approaches. Further, GW calculations predict the correct \pi
-character of the highest occupied state, thanks to several level crossings
between density functional and GW calculations. Our study is based on a recent
gaussian-basis implementation of GW with explicit treatment of dynamical
screening through contour deformation techniques.Comment: 5 pages, 3 figure
Polymer Translocation in Crowded Environments
We study the effect of the crowded nature of the cellular cytoplasm on the
translocation of a polymer through a pore in a membrane. By systematically
treating the entropic penalty due to crowding, we show that the translocation
dynamics are significantly altered, leading to novel scaling behaviors of the
translocation time in terms of chain length. We also observe new and
qualitatively different translocation regimes depending upon the extent of
crowding, transmembrane chemical potential asymmetry, and polymer length.Comment: 4 figure
Interaction of quasilocal harmonic modes and boson peak in glasses
The direct proportionality relation between the boson peak maximum in
glasses, , and the Ioffe-Regel crossover frequency for phonons,
, is established. For several investigated materials . At the frequency the mean free path of the
phonons becomes equal to their wavelength because of strong resonant
scattering on quasilocal harmonic oscillators. Above this frequency phonons
cease to exist. We prove that the established correlation between
and holds in the general case and is a direct consequence of
bilinear coupling of quasilocal oscillators with the strain field.Comment: RevTex, 4 pages, 1 figur
Balancing torques in membrane-mediated interactions: Exact results and numerical illustrations
Torques on interfaces can be described by a divergence-free tensor which is
fully encoded in the geometry. This tensor consists of two terms, one
originating in the couple of the stress, the other capturing an intrinsic
contribution due to curvature. In analogy to the description of forces in terms
of a stress tensor, the torque on a particle can be expressed as a line
integral along any contour surrounding the particle. Interactions between
particles mediated by a fluid membrane are studied within this framework. In
particular, torque balance places a strong constraint on the shape of the
membrane. Symmetric two-particle configurations admit simple analytical
expressions which are valid in the fully nonlinear regime; in particular, the
problem may be solved exactly in the case of two membrane-bound parallel
cylinders. This apparently simple system provides some flavor of the remarkably
subtle nonlinear behavior associated with membrane-mediated interactions.Comment: 16 pages, 10 figures, REVTeX4 style. The Gaussian curvature term was
included in the membrane Hamiltonian; section II.B was rephrased to smoothen
the flow of presentatio
Cell-Free Synthesis of the Mitochondrial ADP/ATP Carrier Protein of Neurospora crassa
ADP/ATP carrier protein was synthesized in heterologous cell-free systems programmed with Neurospora poly(A)-containing RNA and homologous cell-free systems from Neurospora. The apparent molecular weight of the product obtained in vitro was the same as that of the authentic mitochondrial protein. The primary translation product obtained in reticulocyte lysates starts with formylmethionine when formylated initiator methionyl-tRNA (fMet-tRNAfMet) was present. The product synthesized in vitro was released from the ribosomes into the postribosomal supernatant.
The evidence presented indicates that the ADP/ATP carrier is synthesized as a polypeptide with the same molecular weight as the mature monomeric protein and does not carry an additional sequence
Altered translation of GATA1 in Diamond-Blackfan anemia
Ribosomal protein haploinsufficiency occurs in diverse human diseases including Diamond-Blackfan anemia (DBA)[superscript 1, 2], congenital asplenia[superscript 3] and T cell leukemia[superscript 4]. Yet, how mutations in genes encoding ubiquitously expressed proteins such as these result in cell-type– and tissue-specific defects remains unknown[superscript 5]. Here, we identify mutations in GATA1, encoding the critical hematopoietic transcription factor GATA-binding protein-1, that reduce levels of full-length GATA1 protein and cause DBA in rare instances. We show that ribosomal protein haploinsufficiency, the more common cause of DBA, can lead to decreased GATA1 mRNA translation, possibly resulting from a higher threshold for initiation of translation of this mRNA in comparison with other mRNAs. In primary hematopoietic cells from patients with mutations in RPS19, encoding ribosomal protein S19, the amplitude of a transcriptional signature of GATA1 target genes was globally and specifically reduced, indicating that the activity, but not the mRNA level, of GATA1 is decreased in patients with DBA associated with mutations affecting ribosomal proteins. Moreover, the defective hematopoiesis observed in patients with DBA associated with ribosomal protein haploinsufficiency could be partially overcome by increasing GATA1 protein levels. Our results provide a paradigm by which selective defects in translation due to mutations affecting ubiquitous ribosomal proteins can result in human disease.National Institutes of Health (U.S.) (Grant P01 HL32262)National Institutes of Health (U.S.) (Grant U54 HG003067-09
Identification of Dmrt2a downstream genes during zebrafish early development using a timely controlled approach
This research was supported by FCT (Portugal) grant (PTDC/SAU-BID/119627/2010) given to L.S. L.S. was supported by an IF contract from FCT (Portugal). R.A.P. was supported by a PhD fellowship (SFRH/BD/87607/2012) from FCT (Portugal). Publication was sponsored by LISBOA-01-0145-FEDER-007391, project co-funded by FEDER through POR Lisboa 2020 - Programa Operacional Regional de Lisboa, PORTUGAL 2020 and by Fundacao para a Ciencia e a Tecnologia.BACKGROUND: Dmrt2a is a zinc finger like transcription factor with several roles during zebrafish early development: left-right asymmetry, synchronisation of the somite clock genes and fast muscle differentiation. Despite the described functions, Dmrt2a mechanism of action is unknown. Therefore, with this work, we propose to identify Dmrt2a downstream genes during zebrafish early development. RESULTS: We generated and validated a heat-shock inducible transgenic line, to timely control dmrt2a overexpression, and dmrt2a mutant lines. We characterised dmrt2a overexpression phenotype and verified that it was very similar to the one described after knockdown of this gene, with left-right asymmetry defects and desynchronisation of somite clock genes. Additionally, we identified a new phenotype of somite border malformation. We generated several dmrt2a mutant lines, but we only detected a weak to negligible phenotype. As dmrt2a has a paralog gene, dmrt2b, with similar functions and expression pattern, we evaluated the possibility of redundancy. We found that dmrt2b does not seem to compensate the lack of dmrt2a. Furthermore, we took advantage of one of our mutant lines to confirm dmrt2a morpholino specificity, which was previously shown to be a robust knockdown tool in two independent studies. Using the described genetic tools to perform and validate a microarray, we were able to identify six genes downstream of Dmrt2a: foxj1b, pxdc1b, cxcl12b, etv2, foxc1b and cyp1a. CONCLUSIONS: In this work, we generated and validated several genetic tools for dmrt2a and identified six genes downstream of this transcription factor. The identified genes will be crucial to the future understanding of Dmrt2a mechanism of action in zebrafish.publishersversionpublishe
Cell-scale degradation of peritumoural extracellular matrix fibre network and its role within tissue-scale cancer invasion
Local cancer invasion of tissue is a complex, multiscale process which plays
an essential role in tumour progression. Occurring over many different temporal
and spatial scales, the first stage of invasion is the secretion of matrix
degrading enzymes (MDEs) by the cancer cells that consequently degrade the
surrounding extracellular matrix (ECM). This process is vital for creating
space in which the cancer cells can progress and it is driven by the activities
of specific matrix metalloproteinases (MMPs). In this paper, we consider the
key role of two MMPs by developing further the novel two-part multiscale model
introduced in [33] to better relate at micro-scale the two micro-scale
activities that were considered there, namely, the micro-dynamics concerning
the continuous rearrangement of the naturally oriented ECM fibres within the
bulk of the tumour and MDEs proteolytic micro-dynamics that take place in an
appropriate cell-scale neighbourhood of the tumour boundary. Focussing
primarily on the activities of the membrane-tethered MT1-MMP and the soluble
MMP-2 with the fibrous ECM phase, in this work we investigate the MT1-MMP/MMP-2
cascade and its overall effect on tumour progression. To that end, we will
propose a new multiscale modelling framework by considering the degradation of
the ECM fibres not only to take place at macro-scale in the bulk of the tumour
but also explicitly in the micro-scale neighbourhood of the tumour interface as
a consequence of the interactions with molecular fluxes of MDEs that exercise
their spatial dynamics at the invasive edge of the tumour
- …