1,063 research outputs found

    Life course convergence and gender inequality in the German Democratic Republic

    Get PDF

    Effects of Elevated H\u3csup\u3e+\u3c/sup\u3e And P\u3csub\u3ei\u3c/sub\u3e on The Contractile Mechanics of Skeletal Muscle Fibres From Young and Old Men: Implications for Muscle Fatigue in Humans

    Get PDF
    The present study aimed to identify the mechanisms responsible for the loss in muscle power and increased fatigability with ageing by integrating measures of whole‐muscle function with single fibre contractile mechanics. After adjusting for the 22% smaller muscle mass in old (73–89 years, n = 6) compared to young men (20–29 years, n = 6), isometric torque and power output of the knee extensors were, respectively, 38% and 53% lower with age. Fatigability was ∌2.7‐fold greater with age and strongly associated with reductions in the electrically‐evoked contractile properties. To test whether cross‐bridge mechanisms could explain age‐related decrements in knee extensor function, we exposed myofibres (n = 254) from the vastus lateralis to conditions mimicking quiescent muscle and fatiguing levels of acidosis (H+) (pH 6.2) and inorganic phosphate (Pi) (30 mm). The fatigue‐mimicking condition caused marked reductions in force, shortening velocity and power and inhibited the low‐ to high‐force state of the cross‐bridge cycle, confirming findings from non‐human studies that these ions act synergistically to impair cross‐bridge function. Other than severe age‐related atrophy of fast fibres (−55%), contractile function and the depressive effects of the fatigue‐mimicking condition did not differ in fibres from young and old men. The selective loss of fast myosin heavy chain II muscle was strongly associated with the age‐related decrease in isometric torque (r = 0.785) and power (r = 0.861). These data suggest that the age‐related loss in muscle strength and power are primarily determined by the atrophy of fast fibres, but the age‐related increased fatigability cannot be explained by an increased sensitivity of the cross‐bridge to H+ and Pi

    Investigation of qq-dependent dynamical heterogeneity in a colloidal gel by x-ray photon correlation spectroscopy

    Get PDF
    We use time-resolved X-Photon Correlation Spectroscopy to investigate the slow dynamics of colloidal gels made of moderately attractive carbon black particles. We show that the slow dynamics is temporally heterogeneous and quantify its fluctuations by measuring the variance χ\chi of the instantaneous intensity correlation function. The amplitude of dynamical fluctuations has a non-monotonic dependence on scattering vector qq, in stark contrast with recent experiments on strongly attractive colloidal gels [Duri and Cipelletti, \textit{Europhys. Lett.} \textbf{76}, 972 (2006)]. We propose a simple scaling argument for the qq-dependence of fluctuations in glassy systems that rationalizes these findings.Comment: Final version published in PR

    Universal Robotic Gripper based on the Jamming of Granular Material

    Full text link
    Gripping and holding of objects are key tasks for robotic manipulators. The development of universal grippers able to pick up unfamiliar objects of widely varying shape and surface properties remains, however, challenging. Most current designs are based on the multi-fingered hand, but this approach introduces hardware and software complexities. These include large numbers of controllable joints, the need for force sensing if objects are to be handled securely without crushing them, and the computational overhead to decide how much stress each finger should apply and where. Here we demonstrate a completely different approach to a universal gripper. Individual fingers are replaced by a single mass of granular material that, when pressed onto a target object, flows around it and conforms to its shape. Upon application of a vacuum the granular material contracts and hardens quickly to pinch and hold the object without requiring sensory feedback. We find that volume changes of less than 0.5% suffice to grip objects reliably and hold them with forces exceeding many times their weight. We show that the operating principle is the ability of granular materials to transition between an unjammed, deformable state and a jammed state with solid-like rigidity. We delineate three separate mechanisms, friction, suction and interlocking, that contribute to the gripping force. Using a simple model we relate each of them to the mechanical strength of the jammed state. This opens up new possibilities for the design of simple, yet highly adaptive systems that excel at fast gripping of complex objects.Comment: 10 pages, 7 figure

    Privacy Mining from IoT-based Smart Homes

    Full text link
    Recently, a wide range of smart devices are deployed in a variety of environments to improve the quality of human life. One of the important IoT-based applications is smart homes for healthcare, especially for elders. IoT-based smart homes enable elders' health to be properly monitored and taken care of. However, elders' privacy might be disclosed from smart homes due to non-fully protected network communication or other reasons. To demonstrate how serious this issue is, we introduce in this paper a Privacy Mining Approach (PMA) to mine privacy from smart homes by conducting a series of deductions and analyses on sensor datasets generated by smart homes. The experimental results demonstrate that PMA is able to deduce a global sensor topology for a smart home and disclose elders' privacy in terms of their house layouts.Comment: This paper, which has 11 pages and 7 figures, has been accepted BWCCA 2018 on 13th August 201

    Jamming transition in emulsions and granular materials

    Full text link
    We investigate the jamming transition in packings of emulsions and granular materials via molecular dynamics simulations. The emulsion model is composed of frictionless droplets interacting via nonlinear normal forces obtained using experimental data acquired by confocal microscopy of compressed emulsions systems. Granular materials are modeled by Hertz-Mindlin deformable spherical grains with Coulomb friction. In both cases, we find power-law scaling for the vanishing of pressure and excess number of contacts as the system approaches the jamming transition from high volume fractions. We find that the construction history parametrized by the compression rate during the preparation protocol has a strong effect on the micromechanical properties of granular materials but not on emulsions. This leads the granular system to jam at different volume fractions depending on the histories. Isostaticity is found in the packings close to the jamming transition in emulsions and in granular materials at slow compression rates and infinite friction. Heterogeneity of interparticle forces increases as the packings approach the jamming transition which is demonstrated by the exponential tail in force distributions and the small values of the participation number measuring spatial localization of the forces. However, no signatures of the jamming transition are observed in structural properties, like the radial distribution functions and the distributions of contacts.Comment: Submitted to PR

    The Role of Signal Processing in Meeting Privacy Challenges: An Overview

    Full text link

    Force-velocity-power and Force-pCa Relationships of Human Soleus Fibers After 17 Days of Bed Rest

    Get PDF
    Soleus muscle fibers from the rat display a reduction in peak power and Ca2+ sensitivity after hindlimb suspension. To examine human responses to non-weight bearing, we obtained soleus biopsies from eight adult men before and immediately after 17 days of bed rest (BR). Single chemically skinned fibers were mounted between a force transducer and a servo-controlled position motor and activated with maximal (isotonic properties) and/or submaximal (Ca2+ sensitivity) levels of free Ca2+. Gel electrophoresis indicated that all pre- and post-BR fibers expressed type I myosin heavy chain. Post-BR fibers obtained from one subject displayed increases in peak power and Ca2+ sensitivity. In contrast, post-BR fibers obtained from the seven remaining subjects showed an average 11% reduction in peak power (P \u3c 0.05), with each individual displaying a 7–27% reduction in this variable. Post-BR fibers from these subjects were smaller in diameter and produced 21% less force at the shortening velocity associated with peak power. However, the shortening velocity at peak power output was elevated 13% in the post-BR fibers, which partially compensated for their lower force. Post-BR fibers from these same seven subjects also displayed a reduced sensitivity to free Ca2+(P \u3c 0.05). These results indicate that the reduced functional capacity of human lower limb extensor muscles after BR may be in part caused by alterations in the cross-bridge mechanisms of contraction

    Effect of 17 Days of Bed Rest on Peak Isometric Force and Unloaded Shortening Velocity of Human Soleus Fibers

    Get PDF
    The purpose of this study was to examine the effect of prolonged bed rest (BR) on the peak isometric force (Po) and unloaded shortening velocity (Vo) of single Ca2+-activated muscle fibers. Soleus muscle biopsies were obtained from eight adult males before and after 17 days of 6° head-down BR. Chemically permeabilized single fiber segments were mounted between a force transducer and position motor, activated with saturating levels of Ca2+, and subjected to slack length steps. Vo was determined by plotting the time for force redevelopment vs. the slack step distance. Gel electrophoresis revealed that 96% of the pre- and 87% of the post-BR fibers studied expressed only the slow type I myosin heavy chain isoform. Fibers with diameter \u3e100 ÎŒm made up only 14% of this post-BR type I population compared with 33% of the pre-BR type I population. Consequently, the post-BR type I fibers (n = 147) were, on average, 5% smaller in diameter than the pre-BR type I fibers (n = 218) and produced 13% less absolute Po. BR had no overall effect on Po per fiber cross-sectional area (Po/CSA), even though half of the subjects displayed a decline of 9–12% in Po/CSA after BR. Type I fiber Vo increased by an average of 34% with BR. Although the ratio of myosin light chain 3 to myosin light chain 2 also rose with BR, there was no correlation between this ratio and Vo for either the pre- or post-BR fibers. In separate fibers obtained from the original biopsies, quantitative electron microscopy revealed a 20–24% decrease in thin filament density, with no change in thick filament density. These results raise the possibility that alterations in the geometric relationships between thin and thick filaments may be at least partially responsible for the elevated Vo of the post-BR type I fibers
    • 

    corecore