253 research outputs found

    The CMB Dipole and Circular Galaxy Distribution

    Get PDF
    The validity of Hubble's law defies the determination of the center of the big bang expansion, even if it exists. Every point in the expanding universe looks like the center from which the rest of the universe flies away. In this article, the author shows that the distribution of apparently circular galaxies is not uniform in the sky and that there exists a special direction in the universe in our neighborhood. The data is consistent with the assumption that the tidal force due to the mass distribution around the universe center causes the deformation of galactic shapes depending on its orientation and location relative to the center and our galaxy. Moreover, the cmb dipole data can also be associated with the center of the universe expansion, if the cmb dipole at the center of our supercluster is assumed to be due to Hubble flow. The location of the center is estimated from the cmb dipole data. The direction to the center from both sets of data is consistent and the distance to the center is computed from the cmb dipole data.Comment: 9 pages, 3 figures (10 figure captions), 1 tabl

    Residual interaction effects on deeply bound pionic states in Sn and Pb isotopes

    Full text link
    We have studied the residual interaction effects theoretically on the deeply bound pionic states in Pb and Sn isotopes. We need to evaluate the residual interaction effects carefully in order to deduce the nuclear medium effects for pion properties, which are believed to provide valuable information on nuclear chiral dynamics. The s- and p-wave πN\pi-N interactions are used for the pion-nucleon residual interactions. We show that the complex energy shifts are around [(10-20)+i(2-7)]keV for 1s states in Sn, which should be taken into account in the analyses of the high precision data of deeply bound pionic 1s1s states in Sn isotopes.Comment: REVTEX4, 6 pages, 5 tables, Submitted to Phys. Rev. C, Some explanations are added in Version

    Elastic scattering of low energy pions by nuclei and the in-medium isovector pi N amplitude

    Full text link
    Measurements of elastic scattering of 21.5 MeV pi+ and pi- by Si, Ca, Ni and Zr were made using a single arm magnetic spectrometer. Absolute calibration was made by parallel measurements of Coulomb scattering of muons. Parameters of a pion-nucleus optical potential were obtained from fits to all eight angular distributions put together. The `anomalous' s-wave repulsion known from pionic atoms is clearly observed and could be removed by introducing a chiral-motivated density dependence of the isovector scattering amplitude, which also greatly improved the fits to the data. The empirical energy dependence of the isoscalar amplitude also improves the fits to the data but, contrary to what is found with pionic atoms, on its own is incapable of removing the anomaly.Comment: 20 pages, 5 figures, 5 tables. V2 added details on uncertainties,extended discussion. To appear in PR

    The in-medium isovector pi N amplitude from low energy pion scattering

    Full text link
    Differential cross sections for elastic scattering of 21.5 MeV positive and negative pions by Si, Ca, Ni and Zr have been measured as part of a study of the pion-nucleus potential across threshold. The `anomalous' repulsion in the s-wave term was observed, as is the case with pionic atoms. The extra repulsion can be accounted for by a chiral-motivated model where the pion decay constant is modified in the medium. Unlike in pionic atoms, the anomaly cannot be removed by merely introducing an empirical on-shell energy dependence.Comment: 9 pages, 2 figures. Minor changes, to appear in PR

    Precision spectroscopy of pionic 1s states of Sn nuclei and evidence for partial restoration of chiral symmetry in the nuclear medium

    Get PDF
    Deeply bound 1s states of π\pi^- in 115,119,123^{115,119,123}Sn were preferentially observed using the Sn(dd,3^3He) pion-transfer reaction under the recoil-free condition. The 1s binding energies and widths were precisely determined, and were used to deduce the isovector parameter of the s-wave pion-nucleus potential to be b1=0.115±0.007 mπ1b_1 =-0.115\pm 0.007 ~m_{\pi}^{-1}. The observed enhancement of b1|b_1| over the free πN\pi N value (b1free/b1=0.78±0.05b_1^{\rm free}/b_1 = 0.78 \pm 0.05) indicates a reduction of the chiral order parameter, fπ(ρ)2/fπ20.64f^{*}_{\pi} (\rho)^2/f_{\pi}^2 \approx 0.64, at the normal nuclear density, ρ=ρ0\rho = \rho_0.Comment: 4 pages including 3 postscript figures, RevTeX 4 with multirow.sty, submitted to Physical Review Letter

    Cyclooxygenase-2 overexpression correlates with tumour recurrence, especially haematogenous metastasis, of colorectal cancer

    Get PDF
    Epidemiological studies have demonstrated that nonsteroidal anti-inflammatory drugs (NSAIDs), known to inhibit cyclooxygenase (COX), reduce the risk of colorectal cancer. COX is a key enzyme in prostaglandin biosynthesis, and two isoforms of COX, COX-1 and COX-2, have been identified. Recently COX-2 has been reported to frequently overexpress in colorectal neoplasms and to play a role in colorectal tumorigenesis and tumour progression. In this study, using immunohistochemistry, we examined COX-2 expression in advanced human colorectal cancer and its correlation with clinicopathological features. COX-2 expression was observed mainly in the cytoplasm of cancer cells in all the specimens examined, but some stromal cells and endothelial cells were also stained. According to the grade of COX-2 expression of the cancer cells, patients were divided into high- and low-COX-2 expression groups. High-COX-2 expression significantly correlated with tumour recurrence, especially haematogenous metastasis. These results suggest that a selective COX-2 inhibitor can be a novel class of therapeutic agents not only for tumorigenesis but also for haematogenous metastasis of cololectal cancer. To our knowledge, this is the first report on the correlation between COX-2 overexpression and recurrence of colorectal cancer. © 2000 Cancer Research Campaig

    Universality and Scaling for the Structure Factor in Dynamic Order-Disorder Transitions

    Full text link
    The universal form for the average scattering intensity from systems undergoing order-disorder transitions is found by numerical integration of the Langevin dynamics. The result is nearly identical for simulations involving two different forms of the local contribution to the free energy, supporting the idea that the Model A dynamical universality class includes a wide range of local free-energy forms. An absolute comparison with no adjustable parameters is made to the forms predicted by the theories of Ohta-Jasnow-Kawasaki and Mazenko. The numerical results are well described by the former theory, except in the cross-over region between scattering dominated by domain geometry and scattering determined by Porod's law.Comment: 10 pages incl. 3 figures, Revtex. Submitted to PR

    Evolution of speckle during spinodal decomposition

    Full text link
    Time-dependent properties of the speckled intensity patterns created by scattering coherent radiation from materials undergoing spinodal decomposition are investigated by numerical integration of the Cahn-Hilliard-Cook equation. For binary systems which obey a local conservation law, the characteristic domain size is known to grow in time τ\tau as R=[Bτ]nR = [B \tau]^n with n=1/3, where B is a constant. The intensities of individual speckles are found to be nonstationary, persistent time series. The two-time intensity covariance at wave vector k{\bf k} can be collapsed onto a scaling function Cov(δt,tˉ)Cov(\delta t,\bar{t}), where δt=k1/nBτ2τ1\delta t = k^{1/n} B |\tau_2-\tau_1| and tˉ=k1/nB(τ1+τ2)/2\bar{t} = k^{1/n} B (\tau_1+\tau_2)/2. Both analytically and numerically, the covariance is found to depend on δt\delta t only through δt/tˉ\delta t/\bar{t} in the small-tˉ\bar{t} limit and δt/tˉ1n\delta t/\bar{t} ^{1-n} in the large-tˉ\bar{t} limit, consistent with a simple theory of moving interfaces that applies to any universality class described by a scalar order parameter. The speckle-intensity covariance is numerically demonstrated to be equal to the square of the two-time structure factor of the scattering material, for which an analytic scaling function is obtained for large tˉ.\bar{t}. In addition, the two-time, two-point order-parameter correlation function is found to scale as C(r/(Bnτ12n+τ22n),τ1/τ2)C(r/(B^n\sqrt{\tau_1^{2n}+\tau_2^{2n}}),\tau_1/\tau_2), even for quite large distances rr. The asymptotic power-law exponent for the autocorrelation function is found to be λ4.47\lambda \approx 4.47, violating an upper bound conjectured by Fisher and Huse.Comment: RevTex: 11 pages + 12 figures, submitted to PR

    Lattice QCD Calculation of Hadron Scattering Lengths

    Get PDF
    Method of calculating hadron multi-point functions and disconnected quark loop contributions which are not readily accessible through conventional techniques is proposed. Results are reported for pion-pion, pion-nucleon and nucleon-nucleon scattering lengths and the flavor singlet-non singlet meson mass splitting estimated in quenched QCD.Comment: 6 pages. Contribution to Lattice '93. Latex file, style file espcrc2.sty needed.(appended at the end) Figures are also included as epsf file

    Charge-Independence Breaking in the Two-Pion-Exchange Nucleon-Nucleon Force

    Get PDF
    Charge-independence breaking due to the pion-mass difference in the (chiral) two-pion-exchange nucleon-nucleon force is investigated. A general argument based on symmetries is presented that relates the charge-symmetric part of that force to the proton-proton case. The static potential linear in that mass difference is worked out as an explicit example by means of Feynman diagrams, and this confirms the general argument.Comment: 10 pages, latex, 1 figure -- epsfig.sty required -- To appear in Phys. Rev.
    corecore